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Abstract

We develop a new class of distribution–free multiple testing rules for false discovery rate

(FDR) control under general dependence. A key element in our proposal is a symmetrized data

aggregation (SDA) approach to incorporating the dependence structure via sample splitting,

data screening and information pooling. The proposed SDA filter first constructs a sequence

of ranking statistics that fulfill global symmetry properties, and then chooses a data–driven

threshold along the ranking to control the FDR. The SDA filter substantially outperforms the

knockoffmethod in power under moderate to strong dependence, and is more robust than existing

methods based on asymptotic p-values. We first develop finite–sample theories to provide an

upper bound for the actual FDR under general dependence, and then establish the asymptotic

validity of SDA for both the FDR and false discovery proportion (FDP) control under mild

regularity conditions. The procedure is implemented in the R package sdafilter. Numerical

results confirm the effectiveness and robustness of SDA in FDR control and show that it achieves

substantial power gain over existing methods in many settings.
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1 Introduction

Multiple testing provides a useful approach to identifying sparse signals from massive data. Re-

cent developments on false discovery rate (FDR; Benjamini and Hochberg, 1995) methodologies

have greatly influenced a wide range of scientific disciplines including genomics (Tusher et al., 2001;

Roeder and Wasserman, 2009), neuroimaging (Pacifico et al., 2004; Schwartzman et al., 2008), ge-

ography (Caldas de Castro and Singer, 2006; Sun et al., 2015) and finance (Barras et al., 2010).

Conventional FDR procedures, such as the Benjamini–Hochberg (BH) procedure, adaptive p-value

procedure (Benjamini and Hochberg, 1997) and adaptive z-value procedure based on local FDR

(Efron et al., 2001; Sun and Cai, 2007), are developed under the assumption that the test statistics

are independent. However, data arising from large–scale testing problems are often dependent. FDR

control under dependence is a critical problem that requires much research. Two key issues include

(a) how the dependence may affect existing FDR methods, and (b) how to properly incorporate the

dependence structure into inference.

1.1 FDR control under dependence

The impact of dependence on FDR analysis was first investigated by Benjamini and Yekutieli (2001),

who showed that the BH procedure, when adjusted at level α/(
∑p

j=1 1/j) with p being the number

of tests, controls the FDR at level α under arbitrary dependence among the p-values. However,

this adjustment is often too conservative in practice. Benjamini and Yekutieli (2001) further proved

that applying BH without any adjustment is valid for FDR control for correlated tests satisfying the

PRDS property. This result was strengthened by Sarkar (2002), who showed that the FDR control

theory under positive dependence holds for a generalized class of step-wise methods. Storey et al.

(2004), Wu (2008) and Clarke and Hall (2009) respectively showed that, in the asymptotic sense,

BH is valid under weak dependence, Markovian dependence and linear process models. Although

controlling the FDR does not always require independence, some key quantities in FDR analysis,

such as the expectation and variance of the number of false positives, may possess substantially

different properties under dependence (Owen, 2005; Finner et al., 2007). This implies that con-

ventional FDR methods such as BH can suffer from low power and high variability under strong
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dependence. Efron (2007) and Schwartzman and Lin (2011) showed that strong correlations de-

grade the accuracy in both estimation and testing. In particular, positive/negative correlations can

make the empirical null distributions of z-values narrower/wider, which has substantial impact on

subsequent FDR analyses. These insightful findings suggest that it is crucial to develop new FDR

methods tailored to capture the structural information among dependent tests.

Intuitively high correlations can be exploited to aggregate weak signals from individuals to in-

crease the signal to noise ratio (SNR). Hence informative dependence structures can become a bless

for FDR analysis. For example, the works of Benjamini and Heller (2007), Sun and Cai (2009) and

Sun and Wei (2011) showed that incorporating functional, spatial, and temporal correlations into in-

ference can improve the power and interpretability of existing methods. However, these methods are

not applicable to general dependence structures. Efron (2007), Efron (2010) and Fan et al. (2012)

discussed how to obtain more accurate FDR estimates by taking into account arbitrary dependence.

For a general class of dependence models, Leek and Storey (2008), Friguet et al. (2009), Fan et al.

(2012) and Fan and Han (2017) showed that the overall dependence can be much weakened by sub-

tracting the common factors out, and factor–adjusted p-values can be employed to construct more

powerful FDR procedures. The works by Hall and Jin (2010), Jin (2012) and Li and Zhong (2017)

showed that, under both the global testing and multiple testing contexts, the covariance structures

can be utilized, via transformation, to construct test statistics with increased SNR, revealing the

beneficial effects of dependence. However, the above methods, for example by Fan and Han (2017)

and Li and Zhong (2017), rely heavily on the accuracy of estimated models and the asymptotic nor-

mality of the test statistics. Under the finite–sample setting, poor estimates of model parameters

or violations of normality assumption may lead to less powerful and even invalid FDR procedures.

This article aims to develop a robust and assumption–lean method that effectively controls the FDR

under general dependence with much improved power.

1.2 Model and problem formulation

We consider a setup where p-dimensional vectors ξi = (ξi1, . . . , ξip)!, i = 1, · · · , n, follow a multi-

variate distribution with mean µ = (µ1, . . . , µp)! and covariance matrix Σ. The problem of interest
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is to test p hypotheses simultaneously:

H0
j : µj = 0 versus H1

j : µj != 0, for j = 1, . . . , p.

The summary statistic ξ̄ = n−1∑n
i=1 ξi obeys a multivariate normal (MVN) model asymptotically

ξ̄
d≈ MVN(µµµ, n−1Σ). (1)

Denote Ω = Σ−1 the precision matrix. We first assume that Ω is known. For the case with unknown

precision matrix, a data-driven methodology and its theoretical properties are discussed in Section

4. The problem of multiple testing under dependence can be recast as a variable selection problem

in linear regression. Specifically, by taking a “whitening” transformation, Model (1) is equivalent

to the following model:

Y = Xµµµ+ εεε, εεε
d≈ MVN(0, n−1Ip), (2)

where Y = Ω1/2ξ̄ ∈ Rp is the pseudo response, X = Ω1/2 ∈ Rp×p is the design matrix, Ip is a

p-dimensional identity matrix and εεε = (ε1, . . . , εp)! are noise terms that are approximately inde-

pendent and normally distributed. The connection between model selection and FDR was discussed

in Abramovich et al. (2006) and Bogdan et al. (2015), respectively under the normal means model

and regression model with orthogonal designs.

Let θj = I{µj != 0}, j = 1, · · · , p, where I is an indicator function, and θj = 0/1 corresponds to

a null/non-null variable. Let δj ∈ {0, 1} be a decision, where δj = 1 indicates that H0
j is rejected

and δj = 0 otherwise. Let A = {j : µj != 0} denote the non–null set and Ac = {1, · · · , p}\A the null

set. The set of coordinates selected by a multiple testing procedure is denoted Â = {j : δj = 1}.

Define the false discovery proportion (FDP) and true discovery proportion (TDP) as:

FDP =

∑p
j=1(1− θj)δj

(
∑p

j=1 δj) ∨ 1
, TDP =

∑p
j=1 θjδj

(
∑p

j=1 θj) ∨ 1
, (3)

where a ∨ b = max(a, b). The FDR is the expectation of the FDP: FDR = E(FDP). The average

power is defined as AP = E(TDP).

1.3 FDR control by symmetrized data aggregation

This article introduces a new information pooling strategy, the symmetrized data aggregation

(SDA), for handling the dependence issue in multiple testing. The SDA involves splitting and re-

4



assembling data to construct a sequence of statistics fulfilling symmetry properties. Our proposed

SDA filter for FDR control consists of three steps:

• The first step splits the sample into two parts, both of which are utilized to construct statistics

to assess the evidence against the null.

• The second step aggregates the two statistics to form a new ranking statistic fulfilling sym-

metry properties.

• The third step chooses a threshold along the ranking by exploiting the symmetry property

between positive and negative null statistics to control the FDR.

To get intuitions on how the idea works, we start with the independent case [Zou et al. (2020)].

The more interesting but complicated dependent case will be described shortly, with detailed

discussions, refinements and justifications deferred to later sections. Suppose the vectors ξi =

(ξi1, . . . , ξip)! are i.i.d. obeying MVN(µµµ, Ip). The proposed SDA method first splits the full sample

into two disjoint subsets D1 and D2, with sizes n1 and n2 and n = n1 + n2. A pair of statistics,

both of which follow N(0, 1) under the null, are then calculated to test H0
j :

(T1j , T2j) =

{∑
i∈D1

ξij√
n1

,

∑
i∈D2

ξij√
n2

}
.

The product Wj = T1jT2j is used to aggregate the evidence across the two groups. If |µj | is large,

then both T1j and T2j tend to have large absolute values with the same sign, thereby leading to a

positive and large Wj . By contrast, Wj fulfills the symmetry property under H0
j , i.e.

Pr(Wj ≥ t | H0
j) = Pr(Wj ≤ −t | H0

j ), for any t ∈ R. (4)

This motivates one to consider the following selection procedure Â = {j : Wj ≥ L}, where L is the

threshold chosen to control the FDR at level α:

L = inf

{
t > 0 :

#{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

≤ α

}
. (5)

According to the symmetry property (4), the count of negative Wj’s below −t strongly resembles

the count of false positives in the selected subset (i.e. the null Wj ’s above t). It follows that the

fraction in Equation (5) provides a good estimate of the FDP.
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The dependent case involves a more carefully designed SDA filter. After sample splitting, we

apply variable selection techniques such as LASSO to D1 to construct T1j . T1j , which is calculated

based on linear model (2), can effectively capture the dependence structure. Before using D2

to construct T2j , we carry out a data screening step to narrow down the focus. We show that

the screening step can significantly increase the SNR of T2j under strong dependence, hence the

correlations are exploited again to increase the power. The ranking statistic Wj is constructed by

combining T1j and T2j with proven asymptotic symmetry properties. The theory of the proposed

SDA filter is divided into two parts: the finite sample theory provides an upper bound for the FDR

under general dependence, while the asymptotic theory shows that both the FDR and FDP can be

controlled at α+ o(1) under mild regularity conditions.

1.4 Connections to existing work and our contributions

The SDA is closely related to existing ideas of sample–splitting (Wasserman and Roeder, 2009;

Meinshausen et al., 2009) and data carving (Fithian et al., 2014; Lei et al., 2021), both of which

firstly divide the data into two independent parts, secondly use one part to narrow down the focus

(or rank the hypotheses) and finally use the remainder to perform inference tasks such as variable

selection, estimation or multiple testing. These ideas have a common theme with covariate–assisted

multiple testing (Lei and Fithian, 2018; Cai et al., 2019; Li and Barber, 2019), where the primary

statistic plays the key role to assess the significance while the side information plays an auxiliary

role to assist inference [see also the discussion by Ramdas (2019)]. SDA provides a novel way of

data aggregation where both parts of data, which are combined under the symmetry principle, play

essential roles in both ranking and selection. This substantially reduces the information loss in con-

ventional sample–splitting methods, while the symmetry principle, which is fulfilled by construction,

enables the development of an effective and assumption-lean FDR filter.

The SDA is inspired by the elegant knockoff filter for FDR control (Barber and Candès, 2015),

which creates knockoff features that emulate the correlation structure in original features, to form

symmetrized ranking statistics for selecting important variables via the same mechanism (5). The

knockoff method, which is originally developed under regression models, can be applied for FDR
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control in Model (1) via the equivalent Model (2). The knockoff filter employs local pairwise con-

trasts: the ranking variable is constructed to capture the differential evidences against the null

exhibited by the pair (i.e. the original feature vs. its knockoff copy). While it is desirable to make

the pair as “independent” as possible, high correlations will greatly restrict the geometric space in

which the knockoff can be constructed; see Appendix B.1 for detailed discussions and illustrations.

This would significantly increase the difficulty for distinguishing the variable and its knockoff and

hence lower the power. By contrast, the SDA filter, which does not rely on pairwise contrasts, will

not suffer from high correlations.

To visualize the correlation effects, we consider a setup similar to Figure 5 in Barber and Candès

(2015), where correlated normal, t, and exponential data are generated based on an autoregressive

model Σ = (ρ|j−i|) (see Section 5.2 for more details about the setup). We vary ρ from −0.9 to

0.9 and apply BH, knockoff and SDA at FDR level α = 0.2. The actual FDRs and APs based on

500 replications are summarized in Figure 1. Our first column (normal data) shows that knockoff

outperforms BH in some situations, but both the FDR and AP of the knockoff method decrease when

correlations grow higher. By contrast, SDA controls the FDR near the nominal level consistently,

and the power of SDA increases sharply with growing correlations. This pattern corroborates

the insights by Benjamini and Heller (2007), Sun and Cai (2009) and Hall and Jin (2010) that high

correlations, which can be exploited to increase the SNR, may become a bless in large–scale inference.

The proposed research improves the previous work by Zou et al. (2020) in several ways. First,

Zou et al. (2020) has mainly focused on the independent and weak dependent case, with the major

goal of deriving convergence rate of false discovery proportions when simultaneously performing

thousands of t-tests. The methodology in Zou et al. (2020), which does not utilize LASSO and

does not include the data screening step, becomes highly inefficient under strong dependence. See

Appendix B.2 for an illustration. Second, our new theories for FDR and FDP control under depen-

dence and the robustness of the SDA filter under model misspecification substantially depart from

the theory in Zou et al. (2020).

The SDA filter provides a model–free framework that overcomes the limitations of many selective

inference procedures, for example, the methods in Lockhart et al. (2014) and Javanmard and Javadi
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Figure 1: Impacts of correlation on different FDR procedures: “t” denotes the t distribution with 3 df

and “exp” denotes the exponential distribution with scale parameter 2. In both cases the models have been

mis-specified as normal when computing the p-values.

(2019), which require strong assumptions about the conditional distribution to construct asymptotic

p-values. Our numerical results show that the methods in Fan and Han (2017) and Li and Zhong

(2017), which require correctly specified models, accurate estimates of parameters and normality

assumptions, are in general not robust for FDR control. The SDA filter, which employs empirical

distributions instead of asymptotic distributions, only requires the global symmetry of the ranking

statistics. It is more robust than its competitors for a wide range of scenarios since the asymptotic

symmetry property is much easier to achieve in practice compared to asymptotic normality1. As

illustrated by the second column (multivariate t data) of Figure 1, BH fails to control the FDR

under heavy–tailed models. The failure in accounting for the deviations from normality may result

in misleading empirical null and severe bias in FDR analysis (Efron, 2004; Delaigle et al., 2011;

Liu and Shao, 2014). Finally, our Theorem 1, which develops a finite–sample upper bound of FDR

1For example, the average of several t-variables fulfills the symmetry property perfectly but violates the normality

assumption. For asymmetric distributions such as exponential, we usually need a smaller sample size to achieve

asymptotic symmetry compared to asymptotic normality – the latter is stronger than the former since it requires an

additional accurate approximation in the tail areas.
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under dependence, is closely connected to robust knockoffs theory and is established utilizing key

arguments from Barber et al. (2020). More specifically, we employ the leave-one-out technique

suggested in Barber et al. (2020) to analyze the effect on the SDA filter of possible deviations from

normality and the sure screening property, similarly to the analysis of the effect on the Model-X

knockoff filter of errors in estimating the true covariance structure. This important connection

sheds lights on how the model uncertainty can affect the actual FDR level and how the error bound

in FDR can be explicitly quantified using appropriate deviation measures; a detailed discussion is

provided in Section B.3 of the Supplementary Material.

1.5 Organization

The remainder of our paper is structured as follows. In Section 2, we introduce the SDA filter for

FDR control and discuss the effects of dependence on multiple testing. We develop finite sample

and asymptotic theories for FDR control in Section 3. Methodology and theory for the unknown

dependence case are discussed in Section 4. Simulation and real data analysis are presented in

Sections 5 and 6, respectively. The extensions, proofs of theories and additional comparisons are

provided in the Supplementary Material.

Notations. For M ⊂ {1, · · · , p}, let XM be the design matrix with columns (Xj : j ∈ M)

and Xj = (X1j , . . . ,Xpj)! being the jth column. For a matrix or a vector A = (aij), AM is

similarly defined. Let ‖A‖ be the L2 norm, ‖A‖1 = maxj
∑

i |aij |, ‖A‖max = maxi,j |aij | and

‖A‖∞ = maxi
∑

j |aij |. Let λmin(B) and λmax(B) denote the smallest and largest eigenvalues of

a square matrix B. The notation An ∼ Bn means that An/Bn and Bn/An are both bounded in

probability as n → ∞. The “!” and “"” are similarly defined. Let An ≈ Bn denote the two

quantities are asymptotically equivalent, in the sense that An/Bn
p→ 1.

2 The SDA Filter for FDR Control

We start with the assumption that the covariance matrix Σ is known and then move to the case

with unknown Σ in Section 4. Our discussion is mainly based on regression model (2); an equivalent
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description of the methodology via model (1) follows similarly. We first outline in Section 2.1 the

steps for constructing the ranking statistics, then provide intuitive explanations on how the SDA

filter works in Sections 2.2 and 2.3. The detailed SDA algorithm is provided in Section A.4.

2.1 Construction of ranking statistics and the symmetry property

SDA first splits the data into two independent parts D1 and D2, which are respectively used to

construct statistics T1j and T2j . The information in the two parts is then combined to form the

ranking statistic Wj = T1jT2j . A wide class of pairs may be constructed from the sample. This

section presents a specific pair (T1j , T2j), which is used in all numerical studies. Examples of other

possible pairs are presented in Section A.2 in the Supplementary Material.

We propose to use LASSO (Tibshirani, 1996) to extract information from D1 as it simulta-

neously takes into account the sparsity and dependency structures. Let ξ̄1 = n1
−1∑

i∈D1
ξi and

y1 = Xξ̄1. The LASSO estimator is given by µ̂1 = (µ̂11, . . . , µ̂1p)! = argminL(µ), where

L(µ) = (y1 −Xµ)!(y1 −Xµ) + λ‖µ‖1. (6)

Let S = {j : µ̂1j != 0} denote the subset of coordinates selected by LASSO and Sc = {1, · · · , p} \ S

its complement.

Remark 1 Following Wasserman and Roeder (2009), we suggest using n1 = .2n/3/, which pro-

vides stable performance across a wide range of settings. To obtain asymptotically unbiased estima-

tor in the next step, it is required that S contains all the signals with high probability. In practice,

this can be achieved by deliberately choosing an overfitted model that includes most true signals

and many false positives; see also Barber and Candès (2019) and Remark 2 in Section 3.2.

Next we use D2 to obtain the least–squares estimates (LSEs). Let ξ̄2 = n2
−1∑

i∈D2
ξi, y2 =

Xξ̄2, XS = (Xj : j ∈ S) and ej = (0, · · · , 0, 1, 0, · · · , 0)!2. The LSEs are only calculated for

2Specifically, ej is an |S|-vector with 1 in the jth coordinate and 0 elsewhere.
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coordinates on the narrowed subset S. Let µ̂2 = (µ̂21, . . . , µ̂2p)!, where

µ̂2j =





e!j (X

!
SXS)−1X!

S y2, j ∈ S;

0, j ∈ Sc.
(7)

Section 2.3 provides insights on why this data screening step can lead to increased SNR.

To aggregate information across both D1 and D2, let Wj = T1jT2j , where

(T1j , T2j) =

(√
n1µ̂1j

σS,j
,

√
n2µ̂2j

σS,j

)
, (8)

and σ2
S,j’s are the diagonal elements of (X!

SXS)−1. A multiple testing procedure consists of two

steps: ranking and thresholding. Next we show that Wj’s play key roles in both steps. Intuitively,

the positive Wj ’s can be used for ranking because a large and positive Wj indicates strong evidence

against the null. Meanwhile, the negative Wj ’s, which usually correspond to null cases, can be used

for thresholding. The key idea is to exploit the following asymptotic symmetry property :

sup
0≤t≤c log p

∣∣∣∣∣

∑
j∈S∩Ac I(Wj ≥ t)

∑
j∈S∩Ac I(Wj ≤ −t)

− 1

∣∣∣∣∣ = op(1) for some c > 0, (9)

which holds if P (A ⊆ S) → 13. Next we explain how the SDA filter works.

2.2 FDR thresholding

The asymptotic symmetry property (9) motivates us to choose the following data–driven threshold

to control the FDR at level α:

L = inf

{
t > 0 :

#{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

≤ α

}
. (10)

Our decision rule is given by δδδ = (δj : 1 ≤ j ≤ p)! = {I(Wj ≥ L) : 1 ≤ j ≤ p}!. Denote

Â = {j : δj = 1} the discovery set. To see why (10) makes sense, note that #{j : Wj ≤ −t} is an

overestimation of #{j : Wj ≤ −t, j ∈ Ac}, which is asymptotically equal to #{j : Wj ≥ t, j ∈ Ac},

the number of false positives, due to the asymptotic symmetry property (9). It follows that the

3We shall see that S contains all signals, then the LSEs of the null coordinates are symmetrically distributed

around 0. Hence Wj ’s satisfy (4). It is easy to see that (9) is an asymptotic version of the symmetry property given

by (4); see Lemmas S.1-S.2 in Section C of the Supplementary Material for a rigorous discussion.
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fraction in (10) provides an overestimate of the FDP, which (desirably) leads to a conservative FDR

control. Moreover, the empirical FDR level is typically very close to α because the gap between

the fraction in (10) and the actual FDP is usually small in practice, where, for a suitably chosen L,

most cases in {j : Wj ≤ −L} should come from the null.

The operation of the SDA filter can be visualized in Figure 2. We generate {ξi : i = 1, . . . , 90}

from an MVN distribution with µ ∈ Rp=1000 and Σ = (0.8|i−j|)1≤i,j≤p. We randomly set 10% of

the coordinates in µµµ to be 0.2 and 0 elsewhere. Panel (a) presents the scatter plot of 288 nonzero

Wj’s with red triangles and black dots respectively denoting true signals and nulls. Panel (d) plots

the normalized knockoff statistics that are constructed according to (1.7) in Barber and Candès

(2015)4. We can see that both SDA and knockoff fulfill the symmetry property approximately for

the null Wj ’s (black dots). However, SDA achieves a more clearcut separation of signals and noise.

As explained in Section B.1 of the Supplement, the symmetrized knockoff statistics suffers from

high correlations. By contrast, the construction of SDA statistic, which does not depend pairwise

contrasts, eliminates the needs for creating fake variables. We can see from Panel (a) that the SDA

ranking places most true signals above 0, and many true signals stay well above the majority of

the null cases. However, in Panel (d) that illustrates the knockoff ranking, the true signals are not

well separated from the nulls, and many true signals even fall below 0. Since the threshold must be

positive, signals with negative Wj’s will be missed, which leads to substantial power loss.

The impacts on the FDP processes are shown in the second column in Figure 2. We can see that

the estimated FDP process [F̂DP(t)] of SDA approximates the true FDP process [FDP(t)] fairly

accurately. However, the knockoff method yields overly conservative estimates of the true FDPs,

which leads to overly conservative thresholds (marked by blue vertical lines). The last column in

Figure 2 compares the TDP processes of SDA and knockoff. At the FDR level 0.2, the TDP of SDA

is 0.87 (threshold L = 0.62), which is much higher than that of knockoff (TDP=0.03 with threshold

L = 6.80). The low TDP of knockoff is due to the decreased power in distinguishing the signal from

noise [Panel (d)] and an overly conservative threshold [Panel (e)].

4The normalization, which makes the plot easier to read, does not affect the results of the knockoff method. This

is because only the relative magnitudes of Wj matter in the thresholding step of the knockoff method.
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Figure 2: (a): Scatter plot of the 288 nonzero Wjs from the SDA filter with red triangles and black dots denoting

true signals and nulls respectively. A vertical space is added to the middle of the plot to better contrast positive and

negative Wj’s. (b): the corresponding estimate of FDP curve (against t) along with the true FDP for the SDA filter;

(c): the true power curve (against t) for the SDA filter. (d)-(f): the scatter plot of p = 1000 Wjs, the corresponding

FDP estimate, and the true power for the knockoff method.

2.3 Power and effects of dependence

The impact of dependence on FDR analysis has been extensively studied but most discussions have

focused on the validity issue. This section first discusses the impact of dependence on power, and

then provides insights on the information loss of conventional data splitting methods.

Under the SDA framework, many possible pairs of (T1j , T2j) may be constructed. It is easy to

show that Wj constructed via the pairs of sample averages

(T 0
1j , T

0
2j) = (

√
n1ξ̄1,

√
n2ξ̄2) (11)

also fulfill the asymptotic symmetry property. However, the pair in (11), which falls into the class

of marginal testing techniques, can be highly inefficient since it completely ignores the dependence

structure. Next we provide intuitions on how the dependence structure is incorporated into the

SDA filter to improve the efficiency of existing methods.
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First, T1j is superior to T 0
1j by leveraging joint modeling techniques. The merit of joint mod-

eling has been carefully illustrated by Barber and Candès (2015) through extensive simulations.

Candès et al. (2018) further argued that the conditional testing techniques are in general more

powerful in recovering sparse signals than marginal testing methods. T1j is constructed based

on LASSO (a conditional inference technique) and serves as a more suitable building block than

T 0
1j for constructing W1j . Second, T2j enjoys a higher SNR than T 0

2j by exploiting the depen-

dence between ξS and ξSc . Clearly, the expectations of both µ̂2S and ξ̄2S are µ2S . The covari-

ance of µ̂2S is n−1
2 Q, where Q = (X!

SXS)−1. By the inversion formula of a block matrix, we

have X!
SXS = ΩS,S =

(
ΣS,S −ΣS,ScΣ−1

Sc,ScΣSc,S

)−1
. Hence, Q = ΣS,S − ΣS,ScΣ−1

Sc,ScΣSc,S ,

which is the conditional covariance of ξS given ξSc . Let sjl be the (j, l)-th element of Σ. Then

n2Var(ξ̄2j) = sjj. However, n2Var(µ̂2j) = sjj − e!j ΣS,ScΣ−1
Sc,ScΣSc,Sej < sjj. This provides the key

insight on the effect of data screening. In regression terms, strong correlations indicate that a large

fraction of variability in the variables in S can be explained by the variables in Sc. The higher the

correlations, the more reductions in the uncertainties and hence the higher SNRs. This explains

why SDA becomes more powerful as correlations increase (Figure 1).

Finally, both knockoff and SDA achieve the symmetry property at the expense of possibly

reduced SNR: the former increases the dimension of the design matrix by adding noise vari-

ables while the latter involves sample splitting. In contrast with the sample splitting method

in Wasserman and Roeder (2009), where D1 is thrown away after model selection, SDA provides a

new aggregation strategy: T1j is kept and combined with T2j to form the ranking statistic Wj. This

substantially reduces the information loss in conventional sample splitting methods.

2.4 Effects of data screening

The data screening step is always beneficial as long as the tests are correlated. Intuitively, the

smaller the set S, the larger amount of uncertainty can be explained by the variables in Sc. Hence

a more effective dimension reduction implies increased SNR and higher power. Meanwhile, our

theory on FDR control requires that P (A ⊆ S) holds with high probability, indicating that an

overly aggressive data screening step can hurt the FDR procedure. In practice, we recommend

14



deliberately choosing an overfitted model to ensure the validity in FDR control; this would slightly

compromise the power. To illustrate the tradeoff, Figure 3 presents a numerical study to investigate

how the size of S may affect both the FDR and power. We can see that the actual FDRs of SDA

may deviate from the nominal level when S is too small. By contrast, a large S (overfitted model)

has little impact on the FDR levels, but affects the power negatively.

normal t exp
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R

AP

−200 0 200 400 −200 0 200 400 −200 0 200 400
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Figure 3: The effects of data screening. We choose n = 90, p = 500, and µ = ±0.2. The proportion of non-nulls is

10% and α = 0.2. We investigate the performance of SDA over 3 distributions and 3 covariance structures described

in Section 5. Here k denotes the excess counts of |S| with λ selected by the AIC criterion (k can be negative).

3 Theoretical Properties of the SDA Filter

This section first establishes finite sample theory for FDR bounds (Section 3.1), and then develops

asymptotic theories for FDR and FDP control.
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3.1 Finite–sample theory on FDR control

Our finite–sample theory, which requires no model assumptions, establishes an upper bound for the

FDR under general dependence. We emphasize that the upper bound holds for both known and

estimated covariance matrices.

Our theory is developed for a modified SDA filter (SDA+) which chooses the threshold

L = inf

{
t > 0 :

1 + #{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

≤ α

}
.

SDA+ is slightly more conservative than SDA but their difference is negligible when the number of

rejections is large. Recall S = {j : µ̂1j != 0}. Denote WS = (Wj : j ∈ S)! and W−j = WS \Wj.

The key quantity that controls the upper bound is

∆j = |Pr(Wj > 0 | |Wj|,W−j)− 1/2| , (12)

which can be interpreted as a measure of the extent to which the “flip–sign” property of Wj is

violated5. Our finite sample theory for FDR control is given by Theorem 1.

Theorem 1 For any α ∈ (0, 1), the FDR of the SDA+ method satisfies

FDR ≤ min
ε≥0

{
α(1 + 5ε) + Pr

(
max

j∈Ac∩S
∆j > ε

)}
. (13)

Our theorem is closely connected to Theorem 1 in Barber et al. (2020). Both theorems involve

assessing how the deviations from the “idealized situation” would affect the actual FDR level. How-

ever, the interpretations are very different. In model-X knockoff the deviation (from the assumption

of a known X matrix) comes from the estimation errors of the X matrix whereas in SDA the de-

viation (from the perfect symmetry property) comes from the possible violations of the normality

assumption and sure screening property. Our theorem shows that a tight control of ∆j ’s leads to

effective FDR control. Next we carefully interpret the bound and present several important settings

in which the upper bound in (13) exactly achieves or is very close to the nominal level α.

5For a null variable (i.e. j ∈ Ac), the flip–sign property means that Wj is equally likely to be positive or negative

conditioning on its magnitude and other Wk’s in S .
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Consider the ideal case where (a) the error distribution is symmetric, (b) S contains all signals

and (c) Wj ’s are independent of each other for j ∈ S. We can show that ∆j = 0 for all j ∈ Ac ∩ S.

The upper bound achieves the nominal level α exactly since Pr(Wj > 0 | |Wj|,W−j) = Pr(Wj > 0 |

|Wj|) = 1/2 and hence we can set ε = 0. Even when the error distribution is asymmetric, we expect

that ∆j’s would become vanishingly small for moderate sample size n due to the convergence of µ̂2j

to a symmetric distribution (Lemma S.1). Hence the FDR bound would be close to α.

Next we turn to the dependent case. For simplicity, assume that ξi’s come from a multivariate

normal distribution. Let Q = (X!
SXS)−1 := (Qjk)qn×qn with qn = |S|. The matrix Q = ΣS,S −

ΣS,ScΣ−1

Sc,ScΣSc,S is the conditional covariance matrix of ξS given ξSc . The following lemma shows

that the magnitude of ∆j is controlled by the matrix Q.

Lemma 1 (Flip–sign property under Gaussian dependence). Assume that ξi’s obey a multivariate

normal distribution. Denote Q−j,j the jth column of Q excluding Qjj. If Q−j,j = 0, then ∆j = 0.

To provide some intuitions on how close the bound is to α in practice, consider the autoregressive

(AR) structure Σ = (σj,l) = (ρ|j−l|). Since the precision matrix of AR structure is tridiagonal, only

consecutive coordinates are correlated with each other conditional on remaining variables. Suppose

sparse signals are randomly distributed on the p coordinates and the dimension reduction via S is

performed effectively, e.g. qn 2 p. Let E be an event such that for any null variable j ∈ S ∩ Ac,

remaining variables in S are conditionally uncorrelated with it. We expect E to occur with high

probability since for large tridiagonal precision matrices, there is a small chance that two consecutive

coordinates are selected into a small set S simultaneously. On event E, we have Q−j,j = 0 and

it follows from Lemma 1 that ∆j = 0. Consequently the FDR bound would converge to α when

Pr(E) → 1. In the same vein, we expect that the bound would be close to α for the class of power

decay covariance matrices and the class of sparse precision matrices.

3.2 Asymptotic theory on FDP control

Under the asymptotic paradigm we can prove that the FDR can be controlled at α + o(1) under

suitable conditions (asymptotic validity). Denote εi = X(ξi − µ). Let dn = |A|, qn = |S|, q0n =
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|S ∩Ac|, and A(S) := (X!
SXS)−1X!

S = (ajk)qn×p. Assume that qn is uniformly bounded above by

some non-random sequence q̄n that will be specified later. We start with some regularity conditions.

Condition 1 (Sure screening property) As n → ∞, Pr(A ⊆ S) → 1.

Remark 2 Condition 1 ensures that µ̂2j is unbiased for j ∈ S. This pre–selection property, which

has been commonly used (Wasserman and Roeder, 2009; Meinshausen et al., 2009; Barber and Candès,

2019), can be fulfilled with suitably chosen λ under the “zonal” assumption (Bühlmann and Mandozzi,

2014). In practice, we recommend applying AIC to deliberately choose an overfitted model. The

sure screening property may not hold exactly but missing small µj’s is inconsequential. For exam-

ple, if we ignore “unimportant” signals, then Condition 1 is fulfilled by LASSO for large signals

exceeding the rate of dn
√

log p/n. Asymptotically unbiased estimators are usually sufficient for

effective FDR control. This has been corroborated by our empirical results in Section 5.

Condition 2 (Estimation accuracy) The estimator µ̂1 fulfills ‖µ̂1 − µ‖∞ = Op(cnp), where cnp is

a sequence satisfying cnp → 0 and 1/(
√
ncnp) = O(1).

Remark 3 Condition 2 assumes that µ̂1 is a reasonable estimator of µ; this condition typically

holds with cnp = dn
√

log p/n for the LASSO solution (Van de Geer and Bühlmann, 2009).

The next two conditions are standard: Condition 3 imposes constraints on the diverging rates

of q̄n and p, both of which depend on the existence of certain moments; Condition 4 requires that

the eigenvalues of the design matrix are doubly bounded by two constants.

Condition 3 (Moments) There exist two positive diverging sequences Kn1 and Kn2 such that

E(‖ξi − µ‖θ∞) ≤ Kθ
n1 and E(‖A(S)εi‖θ∞) ≤ Kθ

n2 uniformly in S and i ∈ D2, where θ > 2. Assume

that as n → ∞, Kn1
√
log p/n1/2−γ−θ−1 → 0, q̄2/θn Kn2/n1/2−γ−θ−1 → 0 for some small γ > 0.

Condition 4 (Covariance) There exist positive constants κ̄ and κ such that with probability one,

κ ≤ lim inf
n→∞

λmin(X
!
SXS) < lim sup

n→∞
λmax(X

!
SXS) ≤ κ̄.
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Condition 5 (Signals) As n, p → ∞, ηn=|Cµ| → ∞, where

Cµ = {j ∈ A : µ2
j/{max(c2np, log q̄n/n)} → ∞}.

Remark 4 Condition 5 implies that the number of identifiable effect sizes should not be too small

as p → ∞. This seems to be a necessary condition for FDP control. For example, Liu and Shao

(2014) showed that if a multiple testing method controls the FDP with high probability, then its

number of true alternatives must diverge when the number of tests goes to infinity.

Condition 6 (Dependence) Let ρjk = Qjk/
√

QjjQkk. Assume that for each j, Card{1 ≤ k ≤ qn :

|ρjk| ≥ C(log n)−2−ν} ≤ rp, where C > 0, ν > 0 is any small constant, and rp/ηn → 0 as n, p → ∞.

Remark 5 Condition 6 allows ξj to be correlated with all others but requires that the number of

large correlations cannot diverge too fast. The condition appears to be similar to the regularity

conditions in Fan et al. (2012) and Xia et al. (2020) but in fact our condition is much weaker. For

instance, the correlation between µ̂2j1 and µ̂2j2 is just the partial correlation of ξj1 and ξj2 given

the rest variables. In particular, large correlations would be highly unlikely after data screening

for a wide range of popular models, such as the class of power decay covariance matrices and the

class of moderately sparse precision matrices. This reveals the advantage of SDA, which effectively

de–correlates the strong dependence via data screening and conditioning.

Our main theoretical result on the asymptotic validity of the SDA method for both FDP and

FDR control is given by the next theorem.

Theorem 2 Suppose Conditions 1-6 hold. For any α ∈ (0, 1), the FDP of the SDA method satisfies

FDPW (L) :=
#{j : Wj ≥ L, j ∈ Ac}
#{j : Wj ≥ L} ∨ 1

≤ α+ op(1). (14)

It follows that lim sup(n,p)→∞ FDR ≤ α.
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4 Unknown dependence

Now we turn to the case where the covariance structure is unknown. When Ω is unknown, the SDA

filter operates in the same way except that we substitute the estimate Ω̂ in place of Ω.

We propose to estimateΩ using only the first part of the sample D1. Denote Ω̂ the corresponding

estimator. Then the SDA filter can be readily constructed via the steps in Sections 2.1-2.2 with X =

Ω̂
1/2

. Various high-dimensional precision matrix estimation methods, such as the graphical LASSO

(Friedman et al., 2008) and CLIME (Cai et al., 2011), can be used to obtain Ω̂. An attractive

feature of the SDA filter under unknown dependence is its robustness for FDR control. We next

show that the SDA filter is robust for FDR control if Ω̂ is constructed based only on D1. We first

state a modified version of Condition 6, which uses Q′ in place of Q.

Condition 6’ Let Q′ = (X!
SXS)−1X!

SXΩ−1X!XS(X!
SXS)−1 := (Q′

jk)qn×qn and ρ′jk = Q′
jk/
√

Q′
jjQ

′
kk.

Assume that for each j, Card{1 ≤ k ≤ qn : |ρ′jk| ≥ C(log n)−2−ν} ≤ rp, where C > 0, ν > 0 is any

small constant, and rp/ηn → 0 as n, p → ∞.

The following theorem, which is in parallel with Theorem 2, establishes the asymptotic validity

of the SDA filter for estimated covariance.

Theorem 3 Let Ω̂ denote an estimator based on D1. Suppose Conditions 1-5 and 6’ hold. Then

the FDP of the SDA method utilizing X = Ω̂
1/2

satisfies FDP ≤ α + op(1). It follows that

lim sup(n,p)→∞ FDR ≤ α.

Remark 6 Our FDR theory does not require an accurate estimator for Ω. The accuracy of the

estimator only affects the power but not the validity. Consider a working covariance structure

that “estimates” Ω as the identity matrix. Then it can be shown that the FDP can still be

controlled. This is more attractive than the FDR theories in, for example, Fan and Han (2017) and

Li and Zhong (2017) that critically depend on the accuracy of the covariance estimators.

The key step in the proof is to verify the validity of (9). This amounts to addressing two

major issues: the asymptotic symmetry of Wj under the null and the uniform convergence of
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q−1
0n

∑
j∈S∩Ac I(Wj ≥ t). Because Ω̂ is obtained from D1, then µ̂2j is unbiased conditional on D1 and

thus
∑

j∈S∩Ac P (Wj > t) is approximately equal to
∑

j∈S∩Ac P (Wj < −t), establishing the symme-

try property. The dependence assumption on Q′ ensures the convergence of q−1
0n

∑
j∈S∩Ac I(Wj ≥ t).

While sample–splitting ensures the independence between µ̂1 and µ̂2 and hence the robustness

of the SDA filter, as one would expect, a more accurate estimate of Ω yields better power. Previ-

ously we have proposed to estimate Ω using D1 and construct the LSE (7) using D2. In practice

one may consider using D1 to construct T1j , and then obtaining the LSE via the full sample es-

timator, denoted Ω̂F , that is estimated using {D1,D2}. The caveat is that, although X = Ω̂
1/2
F

can potentially increase the power, stronger conditions will be needed to guarantee the asymptotic

validity of the “full–sample” SDA method. As pointed out by an insightful referee, the asymptotic

theory requires that Ω̂F must converge to Ω at a very fast rate, which can be impractical in appli-

cations. We recommend the robust SDA filter that estimates Ω using only D1. Next we specify the

requirements on the estimation accuracy of Ω̂F .

Condition 7 The estimated precision matrix Ω̂F satisfies ‖Ω̂F −Ω‖∞ = Op(anp) with anp → 0.

The following theorem shows that the FDR and FDP can be controlled asymptotically when

Ω̂F is sufficiently close to Ω. Let sn = ‖Ω‖∞.

Theorem 4 Consider a modified SDA procedure where we use D1 to construct T1j and the full

sample estimator Ω̂F to construct the LSE (7). Suppose Conditions 1-6 hold and Ω̂F satisfies

Condition 7. Then, if

cnpanpsnq̄n
√

n log p(log q̄n)
1+γ → 0 (15)

for a small γ > 0, the results in Theorem 2 hold for the procedure with Ω̂F .

This theorem, which is a complementary result to Theorem 3, provides conditions that warrant

the implementation of a more efficient version of SDA. It is worth further investigating the con-

dition (15), which seems to be unavoidable because T1j and T2j are no longer independent when

the whole sample is used to estimate Ω. To fix ideas, suppose that Ω = (ωij)p×p is kn-sparse, i.e.

21



max1≤i≤p
∑

j +=i I(ωij != 0) ≤ kn, and that all its elements ωijs are bounded. First, standard argu-

ments in, for example, Yuan (2010) and Liu et al. (2012) indicate that anp = Op(kn
√

log p/n). Ac-

cordingly, with cnp = dn
√

log p/n, Equation (15) is equivalent to the condition dnknsnq̄n/n1/2 → 0

if p is of a polynomial rate of n. The condition above imposes restrictions on the diverging rates

of dn, kn, sn and q̄n. Assume that dn, kn and sn are all bounded. Then we must require that

q̄n = o(n1/2). Alternatively, if we only assume that kn and sn are bounded, then a sufficient condi-

tion for (15) is q̄n = o(n1/4) (since dn ≤ q̄n). These rates are consistent with those in the literature;

see, for example, Portnoy et al. (1984) and Fan and Peng (2004).

5 Simulation

This section first introduces the R package sdafilter (Section 5.1), followed by simulation designs

(Section 5.2) and comparison results (Section 5.3). Additional results for comparisons with unknown

covariance matrix and other correlation structures are provided in the Supplementary Material.

5.1 Implementation details

We describe the implementation details of the R package sdafilter. For sample–splitting, we follow

the strategy in Wasserman and Roeder (2009), which uses n1 = [2/3n] for selecting variables, and

the rest n2 = n − n1 for obtaining the LSEs. The AIC is used to select the tuning parameter

in LASSO. If the number of the variables selected by AIC exceeds [p/3], then only the first [p/3]

variables will be retained. For the case with unknownΩ, our default option is to apply the R package

glasso to D1, where the tuning parameter is set by the R package huge. If prior knowledge suggests

a nonsparse ΩΩΩ, the “nonsparse” option in our package can be used. This option first estimates the

covariance matrix using the R package POET and then takes its inverse as the input. The stable

option implements the R-SDA method described in Section A.1 of the Supplementary Material.

The kwd option enables the usage of different estimators to summarizes the information in the

first part of data, including the de-biased LASSO, innovated transformation of the sample means

(Hall and Jin, 2010), and factor-adjusted sample means (Fan and Han, 2017).
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5.2 Simulation settings

We consider three types of covariance structures: (I) Autoregressive (AR) structure: Σ = (ρ|j−i|).

(II) Compound symmetry structure: all off-diagonal elements of the Σ are ρ, which can be regarded

as a factor model with one principal component. (III) Sparse covariance structure: Σ = ΓΓ! + Ip,

where Γ is a p×p matrix and each row of Γ has only one position with nonzero value sampled from

uniform distribution [1, 2].

The diagonal elements are normalized as unity for all three settings. To investigate the ro-

bustness of different methods, we consider three error distributions: (i) multivariate normal; (ii)

t-distribution with df = 3 and (iii) exponential distribution with scale parameter 2. The observa-

tions are then standardized to have mean zero and standard deviation one. The correlation structure

remains nearly unchanged after transformation. The following six methods will be compared:

(a) The Benjamini–Hochberg (BH) procedure with the p-values transformed from the t statistics.

(b) The principal factor approximation (PFA) procedure proposed by Fan et al. (2012) for known

covariance and Fan and Han (2017) for estimated covariance. Two versions of the PFA pro-

cedure using the unadjusted p-values and adjusted p-values are implemented using the R

package pfa, denoted as PFAU and PFAA respectively. We only report the results for PFAA

as it generally outperforms PFAU.

(c) The sample-splitting method (SS; Wasserman and Roeder, 2009), which conducts data screen-

ing using LASSO and then applies BH to the p-values calculated based on µ̂2.

(d) The knockoff method (Knockoff; Barber and Candès, 2015), which is implemented using func-

tion “create.fixed” in the R package knockoff.

(e) The DATE method (DATE; Li and Zhong, 2017), which we implemented by ourselves.

(f) The stability–refined SDA filter (R-SDA) implemented using our package sdafilter with the

“stable” option. We only presented R-SDA, which we recommend to use in practice, to make

the plots easier to read. SDA has similar performance to R-SDA.
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Let n be the sample size, p the number tests, and π1 the proportion of signals. For each

combination (n, p,π1), we generate data and apply the six methods at FDR level α. The FDR and

AP are calculated by averaging the proportions from 500 replications.

5.3 Comparison results for known covariance structures

We fix (n, p,π1,α) = (90, 500, 0.1, 0.2) and generate µj from the following random mixture model:

µj
i.i.d.∼ (1− π1)δ0 + π1g(·), j = 1, · · · , p,

where δ0 is the dirac delta function (denoting a point mass at 0), and g(·) is the density of the

non-null distribution, specified as a uniform distribution [µ0 − 0.1, µ0 + 0.1]. The signals µj’s are

then randomly multiplied by a flip-sign. To assess the effect of signal strength, we vary µ0 from 0.1

to 0.3 and apply the six methods to simulated data. The results for Structures (I) and (III) are

summarized in Figure 4, where in the top row we fix ρ = 0.8. The results for Structure (II) with

ρ = 0.8 are shown in Figure S5 of the Supplementary Material. The following observations can be

made.

(a) For the Gaussian error case, BH, knockoff, R-SDA and SS control the FDR at the nominal

level. The FDR levels of PFAA and DATE are inflated when signals are weak.

(b) For the non-Gaussian error case, BH, DATE, SS and PFAA fail to control the FDR under

various settings and the FDR levels can be much higher than the nominal level. Knockoff

controls the FDR in all settings but can be very conservative. R-SDA has the most accurate

and stable FDR levels among all methods.

(c) R-SDA vs SS and BH. As expected, SS and BH control the FDR under the Gaussian case but

are not robust for non-Gaussian errors. R-SDA has much higher power than both methods

(even when the FDR levels of R-SDA are much lower). It is interesting to note that although

SS only uses the second part of the data, its power can be much higher than BH when the

correlation structure is highly informative [Normal case under Structure (I) on top left]. This

is because the data screening step can significantly increase the SNR (Section 2.3).
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(d) R-SDA vs Knockoff. R-SDA and knockoff, both of which are distribution–free, are the only

methods that can control the FDR at the nominal level across all scenarios. The knockoff

method is overly conservative in Setting (I) due to the high correlation. The conservativeness

become less severe under Setting (III). By contrast, R-SDA controls the FDR more accurately

near the target level and has significantly higher power than knockoff.

(e) R-SDA vs DATE and PFAA. In some scenarios, DATE and PFAA can outperform SDA in

power. However, the higher power may be attributed to the severely inflated FDRs. The

numerical results reveal the promise of extending the SDA framework by employing other

methods, such as factor–adjusted z-scores or innovated transformations, as alternatives to the

LASSO estimates, to construct T1j .

Next we turn to investigate how the six methods are affected by the strength of correlation.

For covariance structures (I) and (II), we fix µ = 0.2 under alternative and vary the magnitude of

correlation ρ from independence (ρ = 0) to strong dependence (ρ = 0.9). The results are summarized

in Figure 5. In addition to the observations that we have made based on the previous graph, the

following additional patterns are worthy of mentioning.

(a) The knockoff method becomes more conservative when correlations become higher. Note that

the average correlations in Structure (II) is much higher than that in Structure (I), the power

of the knockoff method deteriorates faster for Structure (II) as ρ increases. For Structure (II),

the FDR of BH also decreases as ρ increases.

(b) In contrast with BH and knockoff, both of which suffer from high correlations, the FDR of

R-SDA remains at the nominal level consistently, and the power increases with the correlation.

The power grows faster for Structure (II). This corroborates the insights that high correlations

can be useful in FDR analysis (Benjamini and Heller, 2007; Sun and Cai, 2009).

(c) In Column 2 of Figure 5, knockoff fails to control the FDR for heavy tailed distributions when

correlation is low. By contrast, SDA controls the FDR accurately under non-Gaussian errors.

25



normal t exp

FD
R

AP

0.1 0.14 0.18 0.22 0.26 0.3 0.1 0.14 0.18 0.22 0.26 0.3 0.1 0.14 0.18 0.22 0.26 0.3

0.0
0.1
0.2
0.3
0.4
0.5

0.00

0.25

0.50

0.75

1.00

µ

(I)

method
BH

DATE

KnockOff

PFA−A

R−SDA

SS

normal t exp

FD
R

AP

0.1 0.14 0.18 0.22 0.26 0.3 0.1 0.14 0.18 0.22 0.26 0.3 0.1 0.14 0.18 0.22 0.26 0.3

0.2

0.4

0.6

0.0

0.2

0.4

0.6

µ

(II
I)

Figure 4: FDR and AP comparison for varying µ in Settings (I) and (III) with known variance.
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Figure 5: FDR and AP comparison for varying ρ in Settings (I)–(II) with known covariance matrix.
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Figure 6: (a)-(b): Histograms of the off-diagonal elements of the sample correlation matrix for

BCR/ABL and NEG; (c)-(d): Histogram of the skewness of the p = 1263 genes for BCR/ABL and

NEG; (e)-(f): the ideal patterns of (c)-(d) when the data are normal.

6 A real-data example

This section illustrates the SDA filter for analysis of high-density oligonucleotide microarrays. The

data set, which contains 12, 625 probe sets from 128 adult patients enrolled in the Italian GIMEMA

multi–center clinical trial, has been used in Chiaretti et al. (2005) and Bourgon et al. (2010) for

identifying genetic factors that are associated with acute lymphoblastic leukemia (ALL). The ALL

dataset is available at http://www.bioconductor.org.

We focus on a subset of 79 patients with B-cell differentiation because existing research reveals

that malignant cells in B-lineage ALL are often associated with genetic abnormalities that have

significant impacts on the clinical course of the disease. The patients are divided into two groups

based on the molecular heterogeneity of the B-lineage ALL: 37 with the BCR/ABL mutation and 42

with NEG. We further narrow down the focus to 10% of the genes (i.e., p = 1, 263) before carrying

out the FDR analysis. Specifically, the uncorrelated screening method (Bourgon et al., 2010) has

been used to remove probe sets with small overall sample variances since they are unlikely to be

differentially expressed.

We apply a two–sample version of R-SDA (see Section A.3 for details), BH, SS, PFAA, Knockoff

28



and DATE at several significance levels for identifying differentially expressed genes across the two

groups. Table 1 summarizes the number of significant probe sets for each method. In Figure 6(a)-

(b), we plot the pairwise correlations of the genes. We can see that a significant proportion of

the correlations exceed 0.4. These correlations can jointly exhibit non-negligible dependence effect.

This explains why the knockoff method is overly conservative. R-SDA is more powerful than SS by

exploiting additional information from the second part of data. BH, PFAA and DATE claims more

significant genes than R-SDA. However, some caveats need to be given regarding the reliability of

BH, PFAA and DATE, which all require normality assumptions (and the latter two require accurate

estimates of the unknown covariance matrices).

Next we conduct a preliminary analysis to investigate the normality assumption, which seems

to have been severely violated in this data set. From Column 2 of Figure 6 we can see that the

skewness scores of many genes exceed the conventional cutoff ±1. As a comparison, we display in

Column 3 of Figure 6 the “ideal” pattern where the normality assumption holds. The histograms

in Column 2 are much wider than the histograms in Column 3, indicating a possibly highly skewed

error distribution. One possible explanation for the difference in power is that BH, PFA-A and

DATE may have inflated FDR levels under violation of normality. This has been observed in our

simulation studies (e.g. last column in Figure S3). By contrast, SDA and knockoff are distribution–

free methods, which tend to produce more reliable and replicable findings. The lists of 19 highest

ranked probe sets by the six methods are presented in Table S1 of Appendix E.

Table 1: The number of rejections for six multiple testing procedures and various significance levels.

R-SDA SS BH PFA-A Knockoff DATE

α = 0.01 19 7 29 98 2 364

α = 0.05 33 15 146 182 2 452

α = 0.10 56 37 229 252 2 501

α = 0.20 139 68 350 339 7 546
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Supplementary Material for “False Discovery Rate Control Under

General Dependence By Symmetrized Data Aggregation”

This supplement contains some refinements and extensions of the SDA filter (Appendix A),

comparisons of the SDA filter with related ideas in the literature (Appendix B), the proofs of main

theorems (Appendix C), other theoretical results (Appendix D), and additional numerical results

(Appendix E).

A Refinements and Extensions

SDA provides a general framework for constructing symmetrized statistics to aggregate structural

information from dependent data. In this section, we discuss some extensions to illustrate how this

framework can be implemented in different scenarios.

A.1 A stability refinement

To improve the stability in selection and avoid “p-value lottery” occurred in a single sample splitting

(Meinshausen et al., 2009), we propose a modified SDA algorithm that employs the “bagging”

technique to aggregate results from multiple sample–splitting procedures.

Denote Âk, k = 1, . . . , B, the discovery sets from repeatedly applying B times the SDA filter

at level α via random sample splittings. The decisions are aggregated by Âv = #{j :
∑B

k=1 I(j ∈

Âk) > .B/2/}, the set of variables that are consistently selected in at least 50% of the replications.

The stability refinement picks Âk∗ having the biggest overlap with Âv:

k∗ = argmax
1≤k≤B

p∑

j=1

{
I(j ∈ Âk ∩ Âv) + I(j ∈ Âc

k ∩ Âc
v)
}
. (S.1)

The new method with stability refinement is denoted R-SDA. The asymptotic theory for the R-SDA

filter is presented and proven in Section D. Our theory implies that the FDPs of Âk can be controlled

uniformly for all k. Hence the discovery set Âk∗ produces more stable results with guaranteed FDR
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control. Our numerical studies show that compared to SDA, R-SDA generally yields similar FDR

and power but smaller variations in the FDP.

A.2 Other types of ranking statistics

The SDA filter utilizes Wj = T1jT2j to rank the hypotheses. The asymptotic symmetry property

(9) is fulfilled as long as T2j are constructed as the LSEs on a subset S that includes all signals with

high probability. This leaves much flexibility for constructing T1j . We provide a few examples.

1) T1j = µ̂1j, where µ̂1j is the LASSO estimate. In contrast with the scaled version µ̂1j/σS,j,

using µ̂1j directly reflects the preference of selecting large effect sizes over significant ones. In

our numerical studies the two methods seem to perform similarly.

2) If there is prior knowledge that the covariance structure can be well described by a factor

model, then we can substitute the factor-adjusted statistics (Fan and Han, 2017) in place of

T1j .

3) T1j is the de-biased estimate of µj (or its scaled version) based on inverse regression method

(Xia et al., 2020).

4) T1j is the innovated transformation of the sample means (Hall and Jin, 2010; Jin, 2012).

In our simulation studies, we found LASSO works well and stably in a wide range of settings but

can be outperformed by other choices of T1j in special situations. How to develop more powerful

ranking statistics is an interesting and challenging problem that requires further research. The

main message of this section is that in applications practitioners may develop new types of ranking

statistics tailored to problem contexts and prior knowledge about the data structure.

Finally we stress that our theory requires that T2j must be chosen so that the asymptotic

symmetry property is fulfilled. For example, it is not allowed to use the LASSO estimate again

to construct T2j because this improper choice would lead to a violation of the symmetry property,

which no longer guarantees that the FDR can be controlled at the nominal level.
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A.3 Two–sample inference

Suppose we are interested in identifying features that exhibit differential levels across two conditions.

Let ξ(k) = (ξ(k)1 , . . . , ξ(k)p )!, k = 1, 2, be two p-dimensional random vectors. The population mean

vectors and covariance matrices are µ(k) and Σ(k), k = 1, 2, respectively. Consider the following

two-sample multiple testing problem:

H0
j : µ

(1)
j = µ(2)

j versus H1
j : µ

(1)
j != µ(2)

j , for j = 1, . . . , p.

The SDA filter can be easily generalized to handle the two-sample situation. Denote D(k) =

{ξ(k)i = (ξ(k)i1 , . . . , ξ(k)ip )!, i = 1, · · · , n(k)}. First, we split D(k) into two disjoint groups D(k)
1 = (ξ(k)1 )

and D(k)
2 = (ξ(k)2 ), with sizes n(k)

1 and n(k)
2 , respectively. Denote nl = n(1)

l +n(2)
l ,Dl = D(1)

l ∪D(2)
l , l =

1, 2. Based on D1, the LASSO estimator can be obtained via minimizing (y1 −Xω)!(y1 −Xω) +

λ‖ω‖1, where y1 = X(ξ̄
(1)
1 − ξ̄

(2)
1 ), X = Ω1/2, and Ω = (n1/n

(1)
1 Σ(1)+n1/n

(2)
1 Σ(2))−1. Denote S the

selected subset by LASSO. Next we calculate the LSEs, using data D2, for coordinates in S. The

formula is identical to (7) except that now we take y2 = X(ξ̄
(1)
2 −ξ̄

(2)
2 ) andX = Ω1/2. Finally, we can

calculate Wj and determine the threshold L using (10). This procedure is implemented in Section 6

in the main text to identify differentially expressed genes in microarray studies. Asymptotic theories

for the two–sample SDA method, which are presented in Appendix D, can be established similarly

as done for the standard SDA method.

A.4 The SDA algorithm: detailed steps

We summarize the operation of the SDA algorithm in this subsection.

• Step 1: Split the data set into two parts D1 and D2. If the precision matrix Ω is unknown,

use D1 to obtain its estimate Ω̂.

• Step 2: Let X = Ω̂
1/2

. Compute µ̂1 by (6) and find the narrowed subset S. Record the

estimated coefficients µ̂1j.

• Step 3: Compute µ̂2 by (7) by restricting on the coordinates in the subset S.

3



• Step 4: Compute the ranking statistic Wj by (8).

• Step 5: Find the threshold L using (10) and output Â = {j : Wj ≥ L} as the selected features.

B Comparisons with Existing Literature

This section presents comparisons of SDA with existing literature. The goal is to provide insights

on the limitations of existing works and highlight some key features of SDA.

B.1 SDA vs. Knockoff

We present some theoretical insights on why the knockoff method suffers from power loss under

dependence. The whitening transformation from Model (1) to Model (2) implies that the fixed-

design knockoff filter in Barber and Candès (2015) is directly applicable to our problem with the

Gram matrix X!X = Ω, where Ω is the precision matrix. The augmented design matrix can

accordingly be constructed as (Ω1/2,0)! (c.f. Section 2.1.2 of Barber and Candès, 2015). The

knockoffs X̃ must fulfill X̃!X̃ = Ω and X!X̃ = Ω − diag{s}, where s = (s1, . . . , sp)! is a p-

dimensional nonnegative vector. Denote Xj the jth column of the design matrix and X̃j its knockoff

copy. In a setting where the features are normalized, i.e. Ωjj = 1 for all j, the correlation between

Xj and X̃j is 1− sj, where 0 ≤ sj ≤ 1. Intuitively, it is desirable to make the entries of s as large

as possible; this ensures that Xj would deviate from its knockoff copy as much as possible (hence

we will hopefully have sufficient power to distinguish the true signals from faked ones).

Consider two settings where the correlation structures are respectively AR(1) [Corr(Xj ,Xk) =

ρ|j−k|, j != k] and compound symmetric [Corr(Xj ,Xk) = ρ, j != k]. We consider two approaches,

namely equi-correlated and SDP knockoffs, both of which were considered in Barber and Candès

(2015) for optimizing sj’s. Figure S1 depicts the “average similarity score” 1 − s as a function of

different correlation levels ρ, where s = p−1∑p
j=1 sj is calculated using both the equi-correlated

(left column) and SDP (right column) optimizers. The plots for AR(1) and compound symmetric

structures are shown in the top and bottom rows, respectively. We can see that the similarity score

1− s increases rapidly in ρ. For example, 1− s has already exceeded 95% when ρ is only 0.25 under
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the compound symmetric structure. Consequently, it becomes extremely difficult to distinguish the

original variables and their faked copies. This leads to substantial power loss of the knockoff filter.

The relationship between the similarity scores and the correlation levels are consistent with the

patterns in the power loss of the knockoff method as noted in Fig.5 of Barber and Candès (2015)

and Figure 1 in the main text of this article.

In contrast with the knockoff filter, the operation of SDA does not rely on pairwise contrasts. It

only utilizes the global symmetry property among all Wj’s. The sample-splitting approach eliminates

the needs for constructing fake variables under a possibly highly restricted geometric space. This

explains why the SDA does not suffer from high correlations.

equi sdp

(I)
(II)

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75
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ρ

1−
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Figure S1: The knockoff filter suffers from power loss under moderate to strong dependence. The average

similarity score (i.e., 1−s) between the original variable and its knockoff as a function of ρ. Top row: AR(1)

structure; bottom row: compound symmetric structure. Both equi-correlated knockoff (left) and SDP knockoff

(right) have been considered. The number of tests is p = 100.
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B.2 SDA vs. RESS

The reflection via sample-splitting (RESS) method in Zou et al. (2020) was developed for inde-

pendent two-sample t-tests. It can be substantially improved by SDA that effectively exploits the

informative dependence structure. For illustration, Figure S2 compares the FDR levels and average

powers (AP) for SDA vs. BH and RESS in Zou et al. (2020) at different correlation levels. The

simulation settings are the same as those in Figure 1 in the main text. We can see that the average

powers of RESS and BH remain roughly the same across all correlation levels since the depen-

dence structure has been ignored. In contrast, the power of SDA increases sharply with growing

correlation levels. Section 2.3 in the main text provides high-level ideas on how the dependence is

incorporated into the SDA filter to improve the power.

normal t exp

AP
FD

R

−0.5 0.0 0.5 −0.5 0.0 0.5 −0.5 0.0 0.5

0.25

0.50

0.75

0.15

0.20

0.25

ρ

method BH R−SDA RESS

Figure S2: Impacts of correlation on different FDR procedures. Here RESS refers to the Refection via

Sample Splitting procedure in Zou et al. (2020).
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B.3 Model uncertainty and error bound for FDR analysis

This section highlights the important connection of our theory to the robust knockoff theory in

Barber et al. (2020), as pointed out by an insightful referee.

The model-X knockoff assumes that the distribution of the feature vector X is known exactly.

However, in practical situations theX distribution must be estimated. In Theorem 1 of Barber et al.

(2020), the KL divergence between the true distribution and its estimate is employed to quantify

the effect of estimation errors on FDR control. The KL divergence can be interpreted as a measure

of the extent to which the pairwise exchangeability property of the model-X knockoff is violated.

Under the SDA inferential framework, the idealized setting corresponds to the case where the

error distribution is perfectly symmetric about 0 and Wj’s are independent of each other for j ∈ S.

This idealized situation implies that Pr(Wj > 0 | |Wj|,W−j) = 1/2. We call this, borrowing the

term from Barber et al. (2020), the flip-sign property, which indicates that Wj is equally likely to

be positive or negative conditional on its magnitude and other Wk’s in S. However, in practi-

cal situations the flip-sign property only holds asymptotically. Therefore the actual FDR would

unfortunately deviate from the nominal level. The amount of deviation is characterized by

∆j = |Pr(Wj > 0 | |Wj|,W−j)− 1/2|,

which can be interpreted as a measure of the extent to which the flip-sign property is violated. We

subsequently use ∆j’s to quantify the effect of asymmetry (i.e. deviation from the perfect symmetry

assumption) on FDR control.

Barber et al. (2020) introduced an elegant leave-one-out argument to establish the upper bound

for the actual FDR level of the model-X knockoff where the X matrix must be estimated from data.

The analysis of SDA in Section 3.1 reveals that the technique can be readily extended to other

important settings where the issue on model uncertainty must be addressed6. In summary, the

work of Barber et al. (2020) provides a set of useful technical tools for developing finite sample

theory on (a) how the FDR control can be affected by the model uncertainty and (b) how the

6In model-X knockoff the model uncertainty comes from the estimation errors whereas in SDA the model uncer-

tainty corresponds to the possible deviation from normality and sure screening property.
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error bound can be explicitly quantified using appropriate deviation measures. The connection of

our theory to the robust knockoff theory also provides insights on the impact of deviation from

symmetry on the performance of the SDA filter.

C Proofs of Main Theorems

C.1 Finite Sample Theory

This section proves Theorem 1. The proof of this theorem has extensively used the techniques

developed by Barber et al. (2020), which shows that the Model-X knockoff (Candès et al., 2018)

incurs an inflation of the FDR that is proportional to the errors in estimating the distribution of

each feature conditional on the remaining features.

Fix ε > 0 and for any t > 0, define

Rε(t) =

∑
j∈Ac I (Wj ≥ t,∆j ≤ ε)

1 +
∑

j∈Ac I (Wj ≤ −t)
.

Consider the event that A = {∆ := maxj∈Ac ∆j ≤ ε}. Furthermore, consider a thresholding rule

L = T (W) that maps statistics W to a threshold L ≥ 0. For each index j = 1, . . . , p, by adopting

the leave-one-out argument in Barber et al. (2020), define

Lj = T (W1, . . . ,Wj−1, |Wj |,Wj+1, . . . ,Wp) ≥ 0.

For the SDA filter with threshold L, we can write

∑
j∈Ac I (Wj ≥ L,∆j ≤ ε)

1 ∨
∑

j I(Wj ≥ L)
=

1 +
∑

j I (Wj ≤ −L)

1 ∨
∑

j I(Wj ≥ L)
·
∑

j∈Ac I (Wj ≥ L,∆j ≤ ε)

1 +
∑

j I (Wj ≤ −L)

≤ αRε(L).
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Next we derive an upper bound for E{Rε(L)}. Note that

E{Rε(L)} =
∑

j∈Ac

E

{
I (Wj ≥ L,∆j ≤ ε)

1 +
∑

j I (Wj ≤ −L)

}

=
∑

j∈Ac

E

{
I (Wj ≥ Lj ,∆j ≤ ε)

1 +
∑

k∈Ac,k +=j I (Wk ≤ −Lj)

}

=
∑

j∈Ac

E

[

E

{
I (Wj ≥ Lj ,∆j ≤ ε)

1 +
∑

k∈Ac,k +=j I (Wk ≤ −Lj)
| |Wj |,W−j

}]

=
∑

j∈Ac

E

{
Pr (Wj > 0 | |Wj |,W−j) I (|Wj | ≥ Lj ,∆j ≤ ε)

1 +
∑

k∈Ac,k +=j I (Wk ≤ −Lj)

}

. (S.2)

The last step (S.2) holds since, after conditioning on (|Wj |,W−j), the only unknown quantity is

the sign of Wj. By the definition of ∆j, we have Pr (Wj > 0 | |Wj |,W−j) ≤ 1/2 +∆j. Hence,

E{Rε(L)}

≤
∑

j∈Ac

E

{
(12 +∆j)I (|Wj| ≥ Lj,∆j ≤ ε)

1 +
∑

k∈Ac,k +=j I (Wk ≤ −Lj)

}

≤ (
1

2
+ ε)




∑

j∈Ac

E

{
I (Wj ≥ Lj ,∆j ≤ ε)

1 +
∑

k∈Ac,k +=j I (Wk ≤ −Lj)

}

+
∑

j∈Ac

E

{
I (Wj ≤ −Lj)

1 +
∑

k∈Ac,k +=j I (Wk ≤ −Lj)

}



= (
1

2
+ ε)



E{Rε(L)}+
∑

j∈Ac

E

{
I (Wj ≤ −Lj)

1 +
∑

k∈Ac,k +=j I (Wk ≤ −Lj)

}

 .

The sum in the last expression can be simplified. If for all null j, Wj > −Lj, then the sum is equal

to zero. Otherwise

∑

j∈Ac

E

{
I (Wj ≤ −Lj)

1 +
∑

k∈Ac,k +=j I (Wk ≤ −Lj)

}

=
∑

j∈Ac

E

{
I (Wj ≤ −Lj)

1 +
∑

k∈Ac,k +=j I (Wk ≤ −Lk)

}

= 1,

where the first equality holds because for any j, k, if Wj ≤ −min(Lj , Lk) and Wk ≤ −min(Lj , Lk),

then Lj = Lk. Accordingly, we have

E{Rε(L)} ≤ 1/2 + ε

1/2− ε
≤ 1 + 5ε,

which proves the theorem. #
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C.2 Asymptotic Theory with Known Ω

We present the proofs of Theorem 2 here along with two key lemmas. The lemmas play key roles

in our technical arguments and may be of independent interest in their own rights. Other technical

lemmas and proofs are provided in Appendix D.

For notational convenience, throughout this section, we consider variables that are included in

the set S, and suppress “j ∈ S” in all the summations with respect to j. Let Φ̃(x) = 1 − Φ(x),

G(t) = q−1
0n

∑
j∈Ac Pr(Wj ≥ t | D1), G−(t) = q−1

0n

∑
j∈Ac Pr(Wj ≤ −t | D1) and G−1(y) = inf{t ≥ 0 :

G(t) ≤ y} for 0 ≤ y ≤ 1.

The first lemma characterizes the closeness between G(t) and G−(t).

Lemma S.1 Suppose Conditions 1, 3, and 4 hold. We have

G(t)

G−(t)
− 1 → 0.

uniformly for all 0 ≤ t ≤ G−1
− (αηn/q0n).

Proof. Define bn = σ
√
C log q̄n where C > 4. Denote Tkj =

√
nkµ̂kj/σj for j = 1, . . . , qn and

σ2 = Qjj/σ2
j . Observe that

G(t)

G−(t)
− 1 =

∑
j∈Ac {Pr(T1jT2j ≥ t, |T2j | ≤ bn | D1)− Pr(T1jT2j ≤ −t, |T2j | ≤ bn | D1)}

q0nG−(t)

+

∑
j∈Ac {Pr(T1jT2j ≥ t, |T2j | > bn | D1)− Pr(T1jT2j ≤ −t, |T2j | > bn | D1)}

q0nG−(t)

:=∆1 +∆2.

Firstly, for the term ∆2, by Lemma S.8 we obtain that
∑

j∈Ac Pr(T1jT2j ≥ t, |T2j | > bn | D1)

q0nG−(t)
≤
∑

j∈Ac Pr(|T2j | > bn | D1)

αηn
"

q̄n × o(1/q̄n)

ηn
.

It follows that ∆2 = o(1).

By Lemma S.7, it can be verified that

Pr(T1jT2j ≥ t, |T2j | ≤ bn | D1)

Pr(T1jZ ≥ t, |Z| ≤ bn | D1)
→ 1,
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where Z ∼ N(0,σ2) which is independent of T1j . Recall that

µ̂2j/σj = n−1
2

n2∑

i=1

e!j

(
X!

SX2S

)−1
X!

2Sεi/σj := n−1
2

n2∑

i=1

εij/σj .

Note that Bn = n2σ2 and Ln = B−θ/2
n

∑n2
i=1 E(|εij|θ) ≤ Cn1−θ/2

2 Kθ
n2. We have

{2 log(1/Ln)}1/2 ≥ [2 log{nθ/2−1
2 /(Kθ

n2)}]1/2 ≥
√

4 log q̄n,

according to Condition 4. The result follows by applying Lemma S.7.

Similarly we get

Pr(T1jT2j ≤ −t, |T2j | ≤ bn | D1)

Pr(T1jZ ≤ −t, |Z| ≤ bn | D1)
→ 1.

Note that

Pr(T1jZ ≤ −t, |Z| ≤ bn | D1) = Pr(T1jZ ≥ t, |Z| ≤ bn | D1).

This implies that ∆1 = o(1), which completes the proof. #

The next lemma establishes the uniform convergence of
∑

j∈Ac I(Wj ≥ t)/(q0nG(t)).

Lemma S.2 Suppose Conditions 3, 4, and 6 hold. Then, conditional on D1, we have

sup
0≤t≤G−1(αηn/q0n)

∣∣∣∣

∑
j∈Ac I(Wj ≥ t)

q0nG(t)
− 1

∣∣∣∣ = op(1), (S.3)

sup
0≤t≤G−1

− (αηn/q0n)

∣∣∣∣

∑
j∈Ac I(Wj ≤ −t)

q0nG−(t)
− 1

∣∣∣∣ = op(1). (S.4)

Proof. We only prove the first formula; the second can be proven similarly. In the proof of Lemma

S.1, we show that

G(t) = q−1
0n

∑

j∈Ac

Pr(T1jT2j ≥ t, |T2j | ≤ bn | D1){1 + o(1)} := G̃(t){1 + o(1)}.

Similarly we can show that

q−1
0n

∑

j∈Ac

I(Wj ≥ t) = q−1
0n

∑

j∈Ac

I(Wj ≥ t, |T2j | ≤ bn){1 + op(1)}.

Hence, it suffices to show that

sup
0≤t≤G−1(αηn/q0n)

∣∣∣∣∣

∑
j∈Ac I(Wj ≥ t, |T2j | ≤ bn)

q0nG̃(t)
− 1

∣∣∣∣∣ = op(1).
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Note that the G̃(t) is a decreasing and continuous function. Let ap = αηn, z0 < z1 < · · · < zhn ≤ 1

and ti = G̃−1(zi), where z0 = ap/q0n, zi = ap/q0n+ bp exp(iζ)/q0n, hn = {log((q0n−ap)/bp)}1/ζ with

bp/ap → 0 and 0 < ζ < 1. Note that G̃(ti)/G̃(ti+1) = 1+ o(1) uniformly in i. It is therefore enough

to derive the convergence rate of

Dn = sup
0≤i≤hn

∣∣∣∣∣

∑
j∈Ac {I(Wj > ti, |T2j | ≤ bn)− Pr(Wj > ti, |T2j | ≤ bn | D1)}

q0nG̃(ti)

∣∣∣∣∣ .

Define Mj = {k ∈ Ac : |ρjk| ≥ C(log n)−2−ν}, B = {|T2j | ≤ bn, j ∈ Ac} and

D(t) = E








∑

j∈Ac

{I(Wj > t, |T2j | ≤ bn)− Pr(Wj > t, |T2j | ≤ bn | D1)}




2

| D1





=
∑

j∈Ac

∑

k∈Ac

{Pr(Wj > t,Wk > t | D1,B)− Pr(Wk > t | D1,B) Pr(Wj > t | D1,B)} {1 + o(1)} .

Note that

D(t) ≤ rpq0nG(t) +
∑

j∈Ac

∑

k∈Mc
j

{Pr(Wk > t,Wj > t | D1,B)− Pr(Wk > t | D1,B) Pr(Wj > t | D1,B)} .

However, for each j ∈ Ac and k ∈ Mc
j, conditional on D1, the Pearson correlation coefficient between

Wj and Wk is ρjk. By Lemma 1 in Cai and Liu (2016),

∣∣∣∣
Pr(Wk > t,Wj > t | D1,B)− Pr(Wk > t | D1,B) Pr(Wj > t | D1,B)

Pr(Wk > t | D1,B) Pr(Wj > t | D1,B)

∣∣∣∣ ≤ An,

uniformly holds, where An = (log n)−1−ν1 for ν1 = min(ν, 1/2).

From the above results, we can get

Pr(Dn ≥ η | D1) ≤
hn∑

i=0

Pr

(∣∣∣∣∣

∑
j∈Ac [I(Wj > ti, |T2j | ≤ bn)− Pr(Wj > ti, |T2j | ≤ bn | D1)]

q0nG̃(ti)

∣∣∣∣∣ ≥ ε | D1

)

≤ 1

ε2

hn∑

i=0

1

q20nG̃
2(ti)

D(ti)

≤ 1

ε2

{

rp

hn∑

i=0

1

q0nG̃(ti)
+ hnAn

}

.

Moreover, observe that

hn∑

i=0

1

q0nG̃(ti)
=

1

ap
+

hn∑

i=1

1

ap + bpei
ζ " b−1

p .
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Finally, note that (a) ζ can be arbitrarily close to 1 such that hnAn → 0, and (b) bp can be

made arbitrarily large as long as bp/ap → 0, we conclude that Dn = op(1) when rp/ηn → 0. This

completes the proof. #

In Lemma S.1 and Lemma S.2, we have established the symmetry property and uniform con-

sistency for Wj’s. Now we are ready to present the proof of Theorem 2.

Proof of Theorem 2 By definition, SDA selects the jth variable if Wj ≥ L, where

L = inf




t ≥ 0 :
∑

j

I(Wj ≤ −t) ≤ αmax




∑

j

I(Wj ≥ t), 1








 .

We need to establish an asymptotic bound for L so that Lemmas S.1-S.2 can be applied.

Let t∗ = G−1
− (αηn/q0n). It follows from Lemma S.2 that

αηn/q0n = G−(t
∗) =

1

q0n

∑

j∈Ac

I(Wj < −t∗){1 + o(1)}.

On the other hand, for any j ∈ Cµ, we can show that Pr(Wj < t∗, j ∈ Cµ) → 0. In fact, it is

straightforward to see that

Pr (Wj < t∗, for some j ∈ Cµ)

≤ ηn Pr
(
T1jT2j −

√
n1n2µ

2
j/σ

2
j < t∗ −

√
n1n2µ

2
j/σ

2
j

)

≤ ηn Pr
(
|µj | (|µ̂1j − µj |+ |µ̂2j − µj|) + |µ̂1j − µj||µ̂2j − µj| > µ2

j − t∗σ2
j /
√
n1n2

)
→ 0.

To see the last equation, denote dj = µ2
j − t∗σ2

j/
√
n1n2. Under Condition 5, it follows that dj =

µ2
j{1 + o(1)}. We then get

Pr (|µj| (|µ̂1j − µj|+ |µ̂2j − µj|) + |µ̂1j − µj||µ̂2j − µj| > dj)

≤ Pr (|µj | (|µ̂1j − µj |+ |µ̂2j − µj|) > dj/2) + Pr (|µ̂1j − µj||µ̂2j − µj| > dj/2) =: H1 +H2.

Note that dj/|µj | = |µj|{1 + o(1)}. We observe that

H1 ≤ Pr (|µ̂1j − µj| > dj/(4|µj |)) + Pr (|µ̂2j − µj | > dj/(4|µj |)) ,

H2 ≤ Pr (|µ̂1j − µj| > cnp) + Pr
(
|µ̂2j − µj| > C

√
log q̄n/n

)
.
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Then the result follows from Lemmas S.8 and Condition 2.

Consequently, we have Pr(
∑

j I(Wj > t∗) ≥ ηn) → 1. We conclude that
∑

j I(Wj < −t∗) "

αηn ≤ α
∑

j I(Wj > t∗), and hence L " t∗. By Lemmas S.1-S.2, we get

∑
j∈Ac I(Wj ≥ L)

∑
j∈Ac I(Wj ≤ −L)

− 1 → 0. (S.5)

Next write

FDP =

∑
j∈Ac I (Wj ≥ L)

1 ∨
∑

j I(Wj ≥ L)
=

∑
j I (Wj ≤ −L)

1 ∨
∑

j I(Wj ≥ L)
×
∑

j∈Ac I (Wj ≥ L)
∑

j I (Wj ≤ −L)

≤ α×R(L).

Note that R(L) ≤
∑

j∈Ac I (Wj ≥ L)/
∑

j∈Ac I (Wj ≤ −L), and thus lim supn→∞ FDP ≤ α by (S.5).

Then, for any ε > 0,

FDR ≤ (1 + ε)αR(L) + Pr (FDP ≥ (1 + ε)αR(L)) ,

which proves the second part of this theorem. #

C.3 Asymptotic Theory with unknown Ω: Proof of Theorems 3 and 4

Proof of Theorem 3 The proof follows similar lines as those of Theorem 2, except that we now

establish Lemmas S.1 and S.2 under Conditions 1-5 and 6’. Note that Lemma S.8 still holds under

Conditions 1, 3, and 4. With unknown Ω, conditional on D1, the Pearson correlation coefficient

between Wj and Wk is changed to ρ′jk. The rest of the proof is essentially the same as that of

Theorem 2 and thus omitted. #

Proof of Theorem 4 To establish this theorem, we consider another SDA procedure with the

statistics W̃j =
√
n1n2µ̂1j µ̃2j/σ2

j , where µ̃2 is the least–squares estimate that uses X̃ = Ω1/2 and

ỹ2 = X̃ξ̄2. We choose a threshold L̃ > 0 by setting

L̃ = inf

{

t > 0 :
#{j : W̃j ≤ −t}
#{j : W̃j ≥ t} ∨ 1

≤ α

}

.
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The proof of this theorem involves a careful investigation of the difference between Wj and W̃j.

The main results are summarized by Lemmas S.3-S.5. Define G = {j : µj = o(cnp)}.

From Lemma S.3, we have, for any j,

Wj − W̃j =
√
n1n2µ̂1j(µ̂2j − µ̃2j)/σ

2
j = Op(n× snq̄nanp

√
log p/n)× {µj +Op(cnp)}.

Thus for any j ∈ G, under condition that cnpanpsnq̄n
√
n log p(log q̄n)1+γ → 0 for a small γ > 0, the

absolute difference between Wj and W̃j is negligible. While for j ∈ Gc, we need to consider the

relative difference. That is,

W̃j = Wj

{
1 +

µ̃2j − µ̂2j

µ̂2j

}
= Wj

{

1 +
Op(snq̄nanp

√
log p/n)

µj +Op(
√

log q̄n/n)

}

= Wj{1 + op(1)}.

In fact, under conditions cnpanpsnq̄n
√
n log p(log q̄n)1+γ → 0 and 1/(

√
ncnp) = O(1), we have:

snq̄nanp
√

log p/n

cnp
= o(1),

snq̄nanp
√

log p/n
√

log q̄n/n
= o(1).

From Lemma S.4 and Lemma S.5 given below, we conclude that

FDP
W̃
(L̃) :=

#{j : W̃j ≥ L̃, j ∈ Ac}
#{j : W̃j ≥ L̃} ∨ 1

= FDPW (L) {1 + op(1)} .

Under Conditions 1-6, similar to the proof of Theorem 2, we can show that FDP
W̃
(L̃) is controlled

at the nominal level asymptotically. Thus the claimed result follows. #

Lemma S.3 If Conditions 1, 3, 4 and 7 hold, then we have µ̂j = µ̃j + Op(anpsnq̄n
√

log p/n)

uniformly in j ∈ S.

Proof. Note that

|µ̂j − µ̃j | =
∣∣∣e!j

{
(X̃!

S X̃S)
−1X̃!

S X̃− (X!
SXS)

−1X!
SX
}
(ξ̄ − µ)

∣∣∣

≤
∥∥∥(X̃!

S X̃S)
−1X̃!

S X̃− (X!
SXS)

−1X!
SX
∥∥∥
∞
‖ξ̄ − µ‖∞

=: ‖∆‖∞‖ξ̄ − µ‖∞.
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Similar to Lemma S.8, we get ‖ξ̄ − µ‖∞ = Op(
√

log p/n). For the analysis of ∆, we note the

following fact

‖X̃!
S X̃S −X!

SXS‖∞ ≤ ‖Ω̂F −Ω‖∞ = Op(anp),

‖X̃!
S X̃Sc −X!

SXSc‖∞ ≤ ‖Ω̂F −Ω‖∞ = Op(anp),

‖(X̃!
S X̃S)

−1 − (X!
SXS)

−1‖∞ ≤ ‖(X̃!
S X̃S)

−1‖∞‖(X!
SXS)

−1‖∞‖X̃!
S X̃S −X!

SXS‖∞ = Op(q̄nanp).

Thus, by triangle inequality, we can conclude that

‖∆‖∞ = ‖(X̃!
S X̃S)

−1X̃!
S X̃Sc − (X!

SXS)
−1X!

SXSc‖∞

≤ ‖(X̃!
S X̃S)

−1 − (X!
SXS)

−1‖∞‖X!
SXSc‖∞ + ‖X̃!

S X̃Sc −X!
SXSc‖∞‖(X̃!

S X̃S)
−1‖∞

= Op(q̄nsnanp)

and accordingly maxj |µ̂j − µ̃j | = Op(q̄nsnanp
√

log p/n). #

The next lemma establishes the approximation result of Wj to W̃j for those j ∈ G.

Lemma S.4 Suppose Conditions 1, 2, 3, 4 and 7 hold and

cnpanpsnq̄n
√
n log p(log q̄n)1+γ → 0 for a small γ > 0. Then, for any M > 0,

sup
M≤t≤G−1(αηn/q0n)

∣∣∣∣∣

∑
j∈G I(W̃j ≥ t)

∑
j∈G I(Wj ≥ t)

− 1

∣∣∣∣∣ = op(1),

sup
M≤t≤G−1

− (αηn/q0n)

∣∣∣∣∣

∑
j∈G I(W̃j ≤ −t)

∑
j∈G I(Wj ≤ −t)

− 1

∣∣∣∣∣ = op(1).

Proof. By Lemma S.3, with probability tending to one,
∣∣∣∣∣∣

∑

j∈G

I(Wj ≥ t)−
∑

j∈G

I(W̃j ≥ t)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

∑

j∈G

{I(Wj ≥ t+ ln)− I(Wj ≥ t)}

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∑

j∈G

{I(Wj ≥ t− ln)− I(Wj ≥ t)}

∣∣∣∣∣∣

:= ∆1 +∆2,

where ln/(cnpanpsnq̄n
√
n log p) → ∞ as n, p → ∞. We will deal with ∆1 only and the part of ∆2 is
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similar. Define the events Ct = {|T1j | > t/(C
√
log q̄n), |T2j | > t/(

√
ncnp), j ∈ G}.

E(∆1) = E





∑

j∈G

I(t ≤ Wj ≤ t+ ln)






≤
∑

j∈G

Pr(t ≤ Wj ≤ t+ ln | Ct) +
∑

j∈G

Pr(t ≤ Wj ≤ t+ ln, Cc
t )

≤
∑

j∈G

Pr(t ≤ Wj ≤ t+ ln | Ct) + o(1),

where we use Lemmas S.8 and Condition 2 to get
∑

j∈G Pr(t ≤ Wj ≤ t + ln, Cc
t ) = o(1). Further

note that under the event, {t ≤ Wj ≤ t+ ln, Ct}, we have

|T2j | ≤
t+ ln
|T1j |

≤ C(t+ ln)
√
log q̄n

t
= C

√
log q̄n +

ln
√
log q̄n
M

≤ C
√

log q̄n = bn,

under condition that ln → 0. Let T ∗
2j =

√
n2(µ̂2j − µj)/σj and Uj =

√
n2µj/σj . Thus from Lemma

S.1, we conclude that

∑

j∈G

Pr(t− T1jUj ≤ T1jZ ≤ t+ ln − T1jUj | Ct)

=
∑

j∈G

E {Φ((t+ ln)/|T1j |− Uj)− Φ(t/|T1j |− Uj) | Ct}

≤
∑

j∈G

lnE
{
|T1j |−1φ(t/|T1j |− Uj) | Ct

}

≤ ln
∑

j∈G

E

{[
(t/T 2

1j − Uj/|T1j |) +
1

t− Uj |T1j |

]
Φ̃(t/|T1j |− Uj) | Ct

}

" lnM
−1 log q̄n

∑

j∈G

E
{
Φ̃(t/|T1j |− Uj) | Ct

}
,

where Φ̃(x) = 1− Φ(x). The second to last inequality is due to

x

x2 + 1
φ(x) < Φ̃(x), for all x > 0.

On the other hand,

∑

j∈G

Pr(Wj > t) =
∑

j∈G

E
{
Φ̃(t/|T1j |− Uj) | Ct

}
{1 + o(1)}.

Therefore, by Markov inequality and similar arguments in the proof of Lemma S.2, the assertion

holds if cnpanpsnq̄n
√
n log p log q̄nhn → 0. Note that hn can be made arbitrarily small as long as

hn → ∞ as n → ∞, from which we completes the proof. #
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In the next lemma, we obtain the approximation result for those j with relatively large µj.

Lemma S.5 Suppose Conditions 1, 2, 3, 4 and 7 hold and

cnpanpsnq̄n
√
n log p(log q̄n)1+γ → 0. Then, for any M > 0,

sup
M≤t≤G−1(αηn/q0n)

∣∣∣∣∣

∑
j∈Gc I(W̃j ≥ t)

∑
j∈Gc I(Wj ≥ t)

− 1

∣∣∣∣∣ = op(1),

sup
M≤t≤G−1

− (αηn/q0n)

∣∣∣∣∣

∑
j∈Gc I(W̃j ≤ −t)

∑
j∈Gc I(Wj ≤ −t)

− 1

∣∣∣∣∣ = op(1).

Proof. Under the designed conditions, we have Wj = W̃j{1 + op(1)} for any j ∈ Gc uniformly.

Then the results follow. #

D Proofs of Additional Theoretical Results

D.1 Proof of Lemma 1 (the coin-flip property under dependence)

Observe that Wj =
√
n1n2µ̂1j µ̂2j/σ2

j =: cj × µ̂2j. Conditional on D1, we have Wj | W−j ∼

N (µj|−j,σ
2
j|−j) with

µj|−j = Cov(Wj ,W−j)Var(W−j)
−1(W−j − EW−j) and

σ2
j|−j = Var(Wj)− Cov(Wj,W−j){Var(W−j)}−1Cov(Wj ,W−j)

!.

For any k, l ∈ S, we have Cov(Wk,Wl) = ckclQkl. Let C = diag{c1, . . . , cqn} and D = CQC.
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Then Cov(Wj,W−j) = Dj,−j and Var(W−j) = D−j,−j. So, we obtain that

Pr(Wj > 0 | |Wj |,W−j ,D1)

=
φ
(
|Wj |−µj|−j

σj|−j

)

φ
(
|Wj|−µj|−j

σj|−j

)
+ φ

(
|Wj |+µj|−j

σj|−j

)

=

φ

(
|Wj |−Dj,−jD

−1
−j,−j(W−j−EW−j)√

Djj−Dj,−jD
−1
−j,−jD−j,j

)

φ

(
|Wj |−Dj,−jD

−1
−j,−j(W−j−EW−j)√

Djj−Dj,−jD
−1
−j,−jD−j,j

)

+ φ

(
|Wj |+Dj,−jD

−1
−j,−j(W−j−EW−j)√

Djj−Dj,−jD
−1
−j,−jD−j,j

) .

:=∆j(|Wj |,W−j ,D1)

Denote Q−j,j = 0 the jth column of Q excluding Qjj. Finally we have

Pr(Wj > 0 | |Wj|,W−j) = E {Pr(Wj > 0 | |Wj|,W−j ,D1) | |Wj|,W−j}

= E {∆j(|Wj|,W−j ,D1) | |Wj|,W−j}− 1/2.

It can be easily verified that if Q−j,j = 0, ∆j(|Wj |,W−j ,D1) = 1/2 and consequently ∆j = 0.

D.2 Asymptotic results for R-SDA and two–sample SDA

The next result is a direct corollary of Theorem 2 which establishes the FDR control of the multi-

splitting procedure R-SDA.

Corollary 1 Suppose Conditions 1-6 hold. For any α ∈ (0, 1) and a given B, the FDR of the

R-SDA method satisfies lim sup(n,p)→∞ FDR ≤ α.

As in (14), the FDP is controlled for each replication so is the FDP of R-SDA, resulting in the FDR

control.

To establish the FDR control result of SDA procedure for the two-sample problem, we introduce

a new sequence of independent random variables {ξi} defined as follows:

ξi − ω =






n2/n
(1)
2 (ξ(1)2i − µ(1)); 1 ≤ i ≤ n(1)

2 ;

−n2/n
(2)
2 (ξ(2)

2i−n(1)
2

− µ(2)); n(1)
2 + 1 ≤ i ≤ n2.
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Note that

ξ̄
(1)
2 − ξ̄

(2)
2 − ω =

1

n(1)
2

n(1)
2∑

i=1

(ξ(1)2i − µ(1))− 1

n(2)
2

n(2)
2∑

i=1

(ξ(2)2i − µ(2)) =
1

n2

n2∑

i=1

(ξi − ω).

By the proofs for Theorem 2, if we replace µ as ω and set Ω−1 = Σ(1)/1 +Σ(2)/(1 − 1) with

1 = limn(1)
l /nl, Theorem 2 holds also for the two-sample problem.

Corollary 2 Suppose Conditions 1-6 hold. For any α ∈ (0, 1) and 0 < 1 < 1, the FDR of the SDA

for the two-sample problem satisfies lim sup(n,p)→∞ FDR ≤ α.

We want to emphasize that as long as Condition 2 is satisfied, the above results hold for other

choices of T1j as discussed in Appendix A.2. For example, consider a hard-thresholding estimator

µ̂1j = ξ̄1jI(|ξ̄1j | > c
√

log p/n) for some c > 0. We know that cnp =
√

log p/n if ξij’s have uniformly

bounded fourth moments.

D.3 Additional lemmas

The first one is the standard Bernstein’s inequality.

Lemma S.6 (Bernstein’s inequality) Let X1, . . . ,Xn be independent centered random variables

a.s. bounded by A < ∞ in absolute value. Let σ2 = n−1∑n
i=1 E(X

2
i ). Then for all x > 0,

Pr
( n∑

i=1

Xi ≥ x
)
≤ exp

(
− x2

2nσ2 + 2Ax/3

)
.

The second one is a moderate deviation result for the mean; See Petrov (2002).

Lemma S.7 (Moderate deviation for the independent sum) Suppose that X1, . . . ,Xn are in-

dependent random variables with mean zero, satisfying E(|Xj |2+δ) < ∞ (j = 1, 2, . . .). Let Bn =
∑n

i=1 E(X
2
i ). Then,

Pr(
∑n

i=1Xi > x
√
Bn)

1− Φ(x)
→ 1,

as n → ∞ uniformly in x in the domain 0 ≤ x ≤ C{2 log(1/Ln)}1/2, where Ln = B−1−δ/2
n

∑n
i=1 E|Xi|2+δ

and C is a positive constant satisfying the condition C < 1.
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The next lemma establishes uniform bounds for µ̂2j.

Lemma S.8 Suppose Conditions 1, 3, and 4 hold. Then, as n → ∞,

Pr
(
σ−1
j |µ̂2j − µj| > σ

√
C log q̄n/n2 | D1

)
= o(1/q̄n),

holds uniformly in S, where C > 4.

Proof. Write

µ̂2j − µj = n−1
2

n2∑

i=1

e!j

(
X!

2SX2S

)−1
X!

2Sεi := n−1
2

n2∑

i=1

εij.

Let mn = (n2q̄n)1/θ+γKn2 and note that

εij = εijI(|εij | ≤ mn)− E{εjI(|εj | ≤ mn)}+ εijI(|εij | > mn)− E{εjI(|εj | > mn)}

=: εij,1 + εij,2.

Conditioned on the first split D1,

Pr (|
√
n2 (µ̂2j − µj)| > σjx for some j | D1)

= Pr

(∣∣∣∣∣

n2∑

i=1

εij,1 +
n2∑

i=1

εij,2

∣∣∣∣∣ >
√
n2σjx for some j | D1

)

≤ Pr

(∣∣∣∣∣

n2∑

i=1

εij,1

∣∣∣∣∣+

∣∣∣∣∣

n2∑

i=1

εij,2

∣∣∣∣∣ >
√
n2σjx for some j | D1

)

≤ Pr

(∣∣∣∣∣

n2∑

i=1

εij,1

∣∣∣∣∣ >
√
n2σjx(1− a) for some j | D1

)

+ Pr

(∣∣∣∣∣

n2∑

i=1

εij,2

∣∣∣∣∣ >
√
n2σjxa for some j | D1

)

=: P1 + P2. (S.6)

Here a is a small positive value.

Firstly consider the term P1. Note that ε1j,1, . . . , εn2j,1 are independent centered random vari-

ables a.s. bounded by 2mn in absolute value. Then the Bernstein inequality in Lemma S.6 yields

that

P1 ≤ 2qnmax
j

exp

{

−
n2σ2

jx
2(1− a)2

2n2E(ε2j,1) + 2 · 2mn ·√n2σjx(1− a)/3

}

.
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Recall that εij,1 = εijI(|εij | ≤ mn)− E[εjI(|εj | ≤ mn)]. Thus

E(ε2j,1) = Var{εjI(|εj | ≤ mn)} ≤ E{ε2jI(|εj | ≤ mn)} ≤ E(ε2j) = Qjj.

We then have:

P1 ≤ 2qnmax
j

exp

{

−
n2σ2

jx
2(1− a)2

2n2Qjj + 2 · 2mn ·√n2σjx(1− a)/3

}

≤ 2q̄nmax
j

exp

{

− x2(1− a)2

2σ2 + 4(1− a)σ−1
j xmn/(3

√
n2)

}

. (S.7)

Next we turn to consider P2. First note that

P2 ≤ Pr

(
n2∑

i=1

max
j

|εij |I(|εij | > mn) + max
j

n2E{|εj |I(|εj | > mn)} >
√
n2σjxa | D1

)

Further note that

E2{|εj |I(|εj | > mn)} ≤ E(ε2j ) Pr(|εj | > mn) ≤ E(ε2j)
E(|εj |θ)
mθ

n
.

We then conclude that

max
j

n2E{|εj |I(|εj | > mn)} ≤ max
j

n2

√
E(ε2j)E(|εj |θ)

mθ/2
n

= o(
√
n2).

From this, we then have

P2 ≤ Pr

(
n2∑

i=1

max
j

|εij |I(|εij | > mn) >
√
n2σjxa/2 | D1

)

≤ Pr

(
max

j
|εij | > mn for some i | D1

)

≤ n2
E(‖A(S)εi‖θ∞)

mθ
n

= o(q̄−1
n ). (S.8)

Let x = σ
√
C log q̄n. From the inequalities (S.6), (S.7), and (S.8), we conclude that

Pr (|
√
n2 (µ̂2j − µj)| > σjx for some j | D1)

≤ 2q̄nmax
j

exp

{

− x2(1− a)2

2σ2 + 4(1− a)σ−1
j xmn/(3

√
n2)

}

+ o(q̄−1
n ) = o(q̄−1

n ).

holds uniformly in S, where we use the condition mn/
√

n/ log q̄n = o(1) which is implied by Con-

dition 3. #
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E Additional Numerical Results

E.1 Estimated covariance structures

This section compares the methods mentioned in Section 5 for the unknown covariance case. In

practice, one should adopt the most appropriate estimator tailored to specific correlation structures.

Specifically, we have used the method based on Cholesky decomposition in Bickel and Levina (2008),

the POET method proposed by Fan et al. (2013), and the graphical lasso (Friedman et al., 2008)

to estimate the unknown Structures (I)–(III), respectively.

Figure S3 follows the settings in Figure 4 (except that the covariance matrix or its inverse

is estimated). Figures S4 uses the same settings as those in Figures 5 with estimated covariance

matrix. We omit a detailed discussion as the observed patterns seem to be very similar to those

in the known covariance case (except that the FDR control sometimes becomes less accurate due

to the additional estimation errors). Our conclusions based on Figure S3 and Figures S4 remain

essentially the same as before. Knockoff and R-SDA seem to be the only methods that can control

the FDR reasonably well in all scenarios, with the R-SDA method having much higher power in

most scenarios.

E.2 Additional comparisons

Figure S5 demonstrates the FDR and AP for various signal magnitude µ under the compound

symmetry error structure (II) and three error distributions, for known and unknown covariance

structures, respectively.

E.3 Boxplots of FDPs

When the noises are sampled from the multivariate normal distribution, Figure S6 shows the boxplot

of the FDP and AP of the testing procedures for π1 = 0.05 and 0.2, while fixing (n, p,α) =

(90, 500, 0.2). The signal magnitude µ is adjusted according to the covariance structures so that the

APs are in a similar range. While the BH is conservative with little power, the R-SDA outperforms
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Figure S3: FDR and AP comparison for varying µ in Settings (I) and (III) with estimated covariance matrix.
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the DATE and PFA in the sense that it provides more accurate estimate of FDP and generally

higher power. The conclusions are consistent for different choices of π1, with narrower interquartile

range of FDP and AP for larger π1. As we can expect, the R-SDA has smaller variation than the

single-splitting SDA.

E.4 The impact of the number of tests and sample sizes

We also conduct experiments by altering the number of tests p, while keeping (n,π1,α) = (90, 0.1, 0.2).

To make the AP comparable across p, the signal µ is adjusted via µ = C
√

log p/n with C depend-

ing on the covariance structures. The results are summarized in the top half of Figure S7. We can

see that all methods have more accurate control of FDR as p increases, but the PFAA and DATE

fail to control the FDR when p is small. To investigate the impact on sample sizes with unknown

covariance, we set µ = C
√

log(p)/n, fix (p,π1,α) = (500, 0.1, 0.2), and consider the normal error.

The results are summarized in the bottom half of Figure S7. We can see that that our R-SDA

method is able to control the FDR and close to the nominal level regardless of the choice of n. Its

superior performance relative to the other three methods is significant in some cases. Though all

the methods exhibit steady AP pattern, the BH, PFA and DATE appear to need larger sample to

achieve satisfactory FDR control than the R-SDA does. This again concurs with our theoretical

result in Theorem 2 and demonstrates the advantage of using the nonparametric estimation of FDP

in the SDA procedure.

E.5 List of selected genes by different methods

Table S1 reports the list of 19 most differentially expressed probe sets obtained by the methods

R-SDA, BH, SS, PFA-A and DATE in the real-data example.

25



Table S1: Differentially expressed probe sets in the B lineage ALL with BCR/ABL versus NEG molecular

rearrangement, for five different multiple testing adjustment methods

R-SDA BH SS PFA DATE

1635 at 1636 g at 39730 at 1636 g at 36502 at

39730 at 39730 at 39317 at 39730 at 38385 at

1636 g at 1635 at 37027 at 1635 at 40202 at

36502 at 1674 at 38052 at 1674 at 37403 at

37403 at 40504 at 1635 at 40202 at 38052 at

32134 at 40202 at 1636 g at 37403 at 33690 at

38052 at 37015 at 40202 at 32434 at 39317 at

36821 at 37027 at 34850 at 37014 at 40876 at

38385 at 32434 at 37403 at 32979 at 33440 at

37027 at 40167 s at 37024 at 1249 at 1674 at

1674 at 40480 s at 1249 at 38111 at 36908 at

41872 at 36591 at 36802 at 37015 at 33774 at

33440 at 33774 at 37025 at 37147 at 39730 at

32434 at 37403 at 32979 at 40504 at 41592 at

40876 at 37014 at 34870 at 33440 at 32134 at

40202 at 37363 at 36502 at 38112 g at 39070 at

39317 at 34472 at 33891 at 36502 at 37558 at

32562 at 32542 at 34800 at 31786 at 33304 at

34990 at 39329 at 36543 at 34850 at 34180 at
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Figure S4: FDR and AP comparison for varying ρ in Settings (I)–(II) with estimated covariance matrix.
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Figure S5: FDR and AP comparison for varying µ in Setting (II) with known (top half) and unknown

variances (bottom half).
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Figure S6: The boxplot of FDP and AP when the proportions of alternative are 0.05 and 0.2. The normal

error is considered and (n, p,α) = (90, 500, 0.2). The signal strength µ is set as 0.2, 0.15, 0.3 for the

covariance structures (I)-(III), respectively.
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Figure S7: Top half: The empirical FDR and AP for varying p. (n,π1,α) = (90, 0.1, 0.2) and µn =

C
√
log(p)/n with C = 0.8, 0.5, 1.2. Bottom half: The FDR and AP for varying n when the covariances are

estimated. (p,π1,α) = (500, 0.1, 0.2) and µn = C
√

log p/n with C = 0.8, 0.5, 1.2.
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