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Abstract

Consider the online testing of a stream of hypotheses where a real–time decision must

be made before the next data point arrives. The error rate is required to be controlled

at all decision points. Conventional simultaneous testing rules are no longer applicable

due to the more stringent error constraints and absence of future data. Moreover, the

online decision–making process may come to a halt when the total error budget, or alpha–

wealth, is exhausted. This work develops a new class of structure–adaptive sequential

testing (SAST) rules for online false discover rate (FDR) control. A key element in our

proposal is a new alpha–investment algorithm that precisely characterizes the gains and

losses in sequential decision making. SAST captures time varying structures of the data

stream, learns the optimal threshold adaptively in an ongoing manner and optimizes the

alpha-wealth allocation across di↵erent time periods. We present theory and numerical

results to show that the proposed method is valid for online FDR control and achieves

substantial power gain over existing online testing rules.
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1 Introduction

The online testing problem is concerned with the investigation of a possibly infinite stream

of null hypotheses {H1, H2, · · · } in an ongoing manner based on sequentially collected data

{X1, X2, · · · }. At each time point, the investigator must make a real-time decision after

Xt arrives, without knowing future data {Xt+1, Xt+2, · · · }. The control of multiplicity in

sequential testing typically involves imposing serial constraints on error rates over time, which

requires that, for example, the family wise error rate (FWER) or false discovery rate (FDR;

Benjamini and Hochberg, 1995) must fall below a pre–specified level ↵ at all decision points.

The online testing problem may arise from a range of applications. For example, the qual-

ity preserving database (QPD) framework (Aharoni et al., 2010) has been widely employed

by many research teams from diverse backgrounds. Some notable databases include Stan-

ford’s HIVdb that serves the community of anti-HIV treatment groups, WTCCC’s large-scale

database that is distributed to assist various whole-genome association studies, and the Na-

tional Health Institute (NIH) influenza virus resource (IVR) that has been intensively queried

by numerous researchers for designing new vaccines and treatments. The proper and e�cient

management of these large databases calls for new analytical tools for handling thousands of

hypothesis tests with real–time decisions made in a sequential fashion. For instance, the NIH

IVR has been used to investigate thousands of biomedical hypotheses and, per the record in

PubMed, has lead to more than 1,000 scientific publications as of January 2020. It has be-

come increasingly important to develop a powerful and e↵ective monitoring system to control

the false positive findings over time. Another important application scenario, which is fre-

quently encountered in finance, social media and mobile computing, is the real–time detection

of anomalies based on high–frequency and large–scale time series data. For example, large

travel service providers closely monitor the number of changes or cancellation requests of ex-

isting itineraries. An abnormal spike usually signifies an unexpected event. It is important for

the company to detect such events early and make necessary adjustments. The development

of online detection system plays a key role for providing novel and timely marketing insights

and avoiding adverse financial losses.
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Large-scale testing under the online setup poses several new issues that are not present in

conventional “o✏ine” setup. First, a real–time decision must be made before the next data

point arrives. This makes conventional step–wise testing methods no longer applicable. For

instance, the well–known Holm’s procedure (Holm, 1979) for FWER control and Benjamini–

Hochberg’s procedure for FDR control both involve first ordering all observed p-values and then

choosing a threshold along the ranking. However, the ranking step becomes impossible due to

the absence of future data. Second, in contrast with conventional FWER and FDR criteria

that only require an overall assessment of the multiplicity in simultaneous testing, the online

methods must proceed with more stringent error constraints that are imposed sequentially

at every decision point. This not only leads to decreased power in detecting signals but also

calls for more carefully designed online testing rules. Third, the data stream often encodes

useful local structures, including signal magnitudes, sparsity levels and grouping patterns, that

may vary over time. It is crucial to develop flexible and adaptive online rules to exploit the

underlying domain knowledge and informative structures. Fourth, the online decision-making

process, which proceeds sequentially without the knowledge of future, may come to a halt when

the total error budget, or alpha–wealth, is exhausted. As a result, the investigator may miss

all potential discoveries in the future. This concern must be carefully addressed because in

many applications the hypothesis tests are conducted in an ongoing manner with unpredictable

patterns – even the total number of hypotheses to be investigated can be unknown. Finally,

how to wisely allocate and invest the alpha–wealth to ensure the validity in error control while

maintaining high statistical power of online testing rules in the long run has remained as a key

issue that requires much research.

The online FDR control problem has received much recent attention and great progresses

have been made. The alpha-investing (AI) idea (Foster and Stine, 2008) and its various

generalizations (Aharoni and Rosset, 2014; Ramdas et al., 2017; Javanmard et al., 2018) have

served as the basic framework and proved to be e↵ective. Carefully designed AI rules are

capable of handling an infinite stream of hypotheses and incorporating informative domain

knowledge into the dynamic decision-making process. Beginning with a pre–specified alpha–

wealth, the key idea in AI algorithms is that each rejection gains extra alpha–wealth, which
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may be subsequently used to make more discoveries at later time points. The generalized AI

(GAI) algorithms (Aharoni and Rosset, 2014; Robertson and Wason, 2018; Lynch et al., 2017)

are developed for a wider class of pay-out functions, enabling the construction of new online

rules with increased power. The GAI++ framework (Ramdas et al., 2017) improves the power

of GAI methods uniformly and is capable of dealing with more general settings. The new

class of weighted GAI++ methods are flexibly designed to allow “indecisions” and are capable

of integrating prior domain knowledge. To alleviate the “piggybacking” and “alpha–death”

issues of AI rules, Ramdas et al. (2017) discussed the concept of decaying memory FDR. To

e↵ectively incorporate structural information into online inference, the SAFFRON procedure

(Ramdas et al., 2018) derived a sequence of thresholds that are adaptive to estimated sparsity

levels and showed that the power can be much improved.

This article develops a new class of structure–adaptive sequential testing (SAST) rules for

online FDR control with several new features. First, in contrast with existing AI and GAI

rules whose building blocks are p-values, the class of SAST rules are built upon the conditional

local false discovery rate (Clfdr), which optimally adapts to important local structures in the

data stream. Second, the sequential rejection rule based on Clfdr leads to a novel alpha–

investing framework that is fundamentally di↵erent from that in Foster and Stine (2008). The

new framework precisely characterizes the tradeo↵s between di↵erent actions in online decision

making, which provides key insights for designing more powerful online FDR rules. The new

AI framework also reveals that SAST automatically avoids the “alpha–death” issue in the

sense that its operation always reserves budget to reject new hypotheses, and can proceed

in an ongoing manner to any time point in the future. Finally, by adaptively learning from

past experiences and dynamically allocating the alphawealth, SAST can e↵ectively avoid the

“piggybacking” issue and improve its performance as more data are acquired. Our theoretical

and numerical results demonstrate that SAST is e↵ective for online FDR control, and achieves

substantial power gain over existing methods in many settings.

The article is organized as follows. Section 2 first introduces the model and problem

formulation, and then develops the oracle SAST procedure for online FDR control by assuming

that model parameters are known. Section 3 discusses computational algorithms, proposes the
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data-driven SAST rule and establishes its theoretical properties. Simulation is conducted in

Section 4 to investigate the finite sample performance of SAST and compare it with existing

methods. SAST is illustrated in Section 5 through applications for identifying di↵erentially

expressed genes and detecting anomalies in time series data. The proofs are provided in the

online supplementary material.

2 Oracle and Adaptive Rules for Online FDR Control

We first describe the model and problem formulation in Section 2.1, then discuss three key

elements in the proposed SAST rule in turn: a new test statistic to capture the structural

information in the data stream (Sections 2.2 and 2.3); a new alpha–investing framework to

characterize the gains and losses in sequential decision making (Section 2.4); and a new adap-

tive learning algorithm to optimize the alpha–wealth allocation (Sections 2.5).

2.1 Model and Problem Formulation

Denote T a continuous temporal domain and t 2 T a time point. Let T ⇢ T be a discrete,

ordered and evenly spaced index set for time labels1. Suppose we are interested in testing a

sequence of null hypotheses {Ht : t 2 T} based on data stream XXX = (Xt : t 2 T). To describe

the true states of nature, define Bernoulli variables ✓t, where ✓t = 0/1 if Ht is true/false.

Let {⇡t ⌘ P (✓t = 1) : t 2 T } denote the local sparsity levels that may vary over time. The

observations can be described using a hierarchical model:

✓t ⇠ Bernoulli(⇡t), Xt|✓t ⇠ Ft = (1� ✓t)F0 + ✓tF1t, (2.1)

where F0 and F1t are the null and non-null distributions, respectively. Denote f0 and f1t the

corresponding density functions. We assume that F0 is known and identical for all t 2 T . By

contrast, ⇡t and f1t can vary smoothly in t 2 T .

1T may be taken either as {1, 2, · · · , t} on a growing domain or a set of points that lie on a fixed-domain

regular grid: { 1
t ,

2
t , ...,

t�1
t , 1} with t ! 1.
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Remark 1. The inhomogeneity assumption reflects that signals may either vary in strengths

or arrive at di↵erent rates over time. This structural information can be highly informative.

The smoothness assumption makes it possible for pooling information from the observations

in the neighborhood of t. We do not impose further assumptions on ⇡t and F1t, both of which

will be estimated non-parametrically.

Let XXXt = (Xi : i 2 T; i  t) be the collection of summary statistics (e.g. p–values or

z–values) up to time t. Consider a class of online decision rules ��� = {�t(XXXt) : t 2 T} 2 {0, 1}T,

where �t(XXXt) represents a real-time decision in the sense that �t only depends on information

available at time t, with �t = 1 indicating that Ht is rejected and �t = 0 otherwise. Denote

���t = {�i(XXXi) : i 2 T; i  t} the collection of decisions up to t. The online FDR problem is

concerned with the performance of a stream of real–time decisions. For decisions up to t, let

FDRt(���t) = E
(P

it;i2T(1� ✓i)�i

(
P

it;i2T �i) _ 1

)
, (2.2)

where the superscript “t” denotes that the FDR is evaluated at a specific time point. The

goal is to construct a real–time decision rule ��� = {�t(XXXt) : t 2 T} that controls the FDRt at

level ↵ for all t 2 T. To compare the power of di↵erent testing rules, define the average power

(AP) and missed discovery rate (MDR) as

APt(���t) =
E(
P

it;i2T ✓i�i)

E(
P

it;i2T ✓i)
; MDRt(���t) = 1�APt(���t). (2.3)

To simplify the discussion, throughout this section we assume that the distributional in-

formation such as the non-null proportion ⇡t and density function ft in Model 2.1 are known.

Section 3 considers the case where model parameters are unknown and discusses in detail

related estimation and implementation issues.

2.2 The oracle rule for simultaneous testing

The goal of this section is to justify the fundamental role of Clfdr as the building block of the

proposed online FDR rule.
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The online decision-making process is complicated due to the serial constraints on FDR

and absence of future data. To focus on the essential issue, we first consider an ideal setup

where a hypothetical oracle observes all data in a local neighborhood at once and makes a

batch of simultaneous decisions. Let d denote the size of a neighborhood. Consider the

collection of hypotheses in a neighborhood prior to t⇤ � d: {Hi : t⇤ � d + 1  i  t⇤}.

Denote the neighborhood Nd(t⇤) = {t⇤ � d + 1, · · · , t⇤} and the simultaneous decisions ���⇤ =

{�⇤i : i 2 Nd(t⇤)}, where �⇤i is allowed to depend on the entire d-vectorXXX⇤ = {Xi : i 2 Nd(t⇤)}.

Unlike (2.2), we only require that the FDR is controlled for the d simultaneous decisions:

FDRs(���⇤) = E
(P

i2Nd(t⇤)
(1� ✓i)�i

(
P

i2Nd(t⇤)
�i) _ 1

)
, (2.4)

where the superscript “s” indicates a simultaneous–type FDR concept.

The simultaneous testing of multiple hypotheses can be conceptualized as a two-stage

inferential process: firstly ranking all hypotheses according to a significance index and secondly

choosing a cuto↵ along the ordered sequence. This process can be described by a thresholding

rule of the form

��� = {I(⇤i  c) : i 2 Nd(t
⇤)},

where I(·) is an indicator function, ⇤i is the significance index of Hi and c is the cuto↵ of

⇤i. For example, the BH procedure uses the p-value as the significance index to order the

hypotheses, and implements a step-up algorithm to determine a data-driven cuto↵ c.

However, the p-value is ine�cient for online FDR analysis as it fails to capture the impor-

tant structural information in the data stream. We propose to use the conditional local false

discovery rate (Clfdr) as the significance index to order the hypotheses:

Clfdrt(xt) = P(✓t = 0|Xt = xt) =
(1� ⇡t)f0(xt)

ft(xt)
, for t 2 T. (2.5)

Denote Clfdr(1), · · · ,Clfdr(d) the ordered Clfdr values in Nd(t⇤) and H(1), · · · , H(d) the

corresponding hypotheses. To determine the cuto↵ for simultaneous testing, we apply a step-

7



wise algorithm

k = max

(
j :

1

j

jX

i=1

Clfdr(i)  ↵

)
. (2.6)

Then the threshold is c = Clfdr(k) and we reject H(1), · · · , H(k). The Clfdr rule (2.6) may

be viewed as an oracle rule that sees all data in a local neighborhood at once and then

makes simultaneous decisions. In Appendix C, we establish the optimality property of the

Clfdr rule for simultaneous testing under the “o✏ine” setup. An infinite data stream can

be approximately by sequential data points arrived in batches. Intuitively, the Clfdr statistic

provides a good building block for developing new online sequential testing rules as it is optimal

for simultaneous inference in each batch of data points.

Remark 2. In the “o✏ine” setup for simultaneous testing with a covariate sequence, which

includes the Clfdr rule (2.6) as a special case, Cai et al. (2019) develops asymptotic optimality

theory. We can similarly show that (2.6) is asymptotically optimal in the sense that it achieves

the benchmark of a hypothetical oracle. However, the optimality issue in the online setup,

which depends on many other factors such as the optimal allocation of alpha–wealth and

prediction of future patterns over time, is still an open issue and requires much research.

2.3 Adapting to local structures by Clfdr: an illustration

The incorporation of structural information and domain knowledge promises to improve the

power of existing FDR procedures (Genovese et al., 2006; Cai and Sun, 2009; Hu et al., 2010;

Lei and Fithian, 2018; Cai et al., 2019). For example, the works by Hu et al. (2010), Li and

Barber (2019) and Xia et al. (2020) showed that the weighted p-values can be constructed

to capture the varying sparsity levels of ordered or grouped hypotheses. In contrast with the

p-value, the Clfdr takes into account important structural information such as ⇡t and ft, which

makes Clfdr an ideal building block for multiple testing with inhomogeneous data streams. We

present an example to illustrate the advantage of the Clfdr rule.

Consider the following situation where the data stream {X1, X2, . . . , Xt, . . .} obeys a ran-
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dom mixture model with varying sparsity levels:

Xt ⇠ (1� ⇡t)N(0, 1) + ⇡tN(µ, 1). (2.7)

Model (2.7) is a special case of Model (2.1): the null and alternative densities are fixed and

the dynamic part is fully captured by the varying proportion ⇡t. The key idea of Clfdr and

weighted p-value (in the form of pt/wt, where wt is the weight for Ht) is to upweight the

hypotheses in a local neighborhood where signals appear more frequently (e.g. in clusters).

To compare the e↵ectiveness of di↵erent weighting methods, we simulate a data stream for

testing m = 5000 hypotheses. The top row in Figure 1 sets ⇡t = 0.5 in blocks [1001 : 1150],

[2001 : 2150], [3001 : 3100] and [4001 : 4150], and ⇡t = 0.01 elsewhere. We vary µ from 2 to

4. The bottom row sets µ = 2.5 and vary ⇡t from 0.2 to 0.9 in the above blocks. The block

structure is highly informative and can be exploited by Clfdr and weighted p-values to improve

the power. We apply the following methods at FDR level ↵ = 0.05 by assuming that the model

parameters in (2.7) are known: BH (Benjamini and Hochberg, 1995), the structure–adaptive

BH algorithm (SABHA; Li and Barber, 2019) using weighted p-values with wt = 1/(1 � ⇡t),

the GAP method (Xia et al., 2020) using weighted p-values with wt = ⇡t/(1 � ⇡t), and the

Clfdr rule (2.6). We can see that all methods control the FDR at the nominal level. In terms

of the power, BH can be improved by SABHA and GAP, both of which are dominated by

the Clfdr rule. Clfdr captures the varying structure in the data stream more e↵ectively: in

addition to varied ⇡t, it also adapts to ft, leading to further power improvement.

2.4 A new alpha–investing framework

Existing FDR methods such as the BH and Clfdr procedures are simultaneous inference pro-

cedures that involve first ordering the significance indices (p-value or Clfdr) of all hypotheses

and then applying a step-wise algorithm to the ordered sequence to determine the threshold.

However, the ranking and thresholding strategy cannot be applied to the online setting where

the investigator must make real–time decisions without seeing future observations. This sec-

tion discusses how to avoid the overflow of the FDR at any given time t and how to e�ciently
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Figure 1: Structure–adaptiveness: Clfdr vs weighted p-values.

allocate the alpha–wealth to increase the power.

We start with a novel interpretation of the alpha–investing idea by recasting the Clfdr

algorithm (2.6) as a varying–capacity knapsack process. Denote Rt ⇢ {H1, H2, · · · , Ht} the

collection of rejected hypotheses at time t. The decision process (2.6) can be conceptualized

as a sequence of comparisons of two quantities: the nominal FDR level ↵ and the average of

the rejected Clfdr values. Specifically, (2.6) motivates us to consider the constraint

Ave {Clfdri : i 2 Rt}  ↵, for all t 2 T, (2.8)

where Ave(A) denotes the average of the elements in set A. The simultaneous testing setup is

only concerned with one constraint at the last time point when all data have been observed.

By contrast, the online setup poses a series of constraints, e.g. (2.8) must be fulfilled for every

t to avoid the overflow of FDRt (2.2).

We view (2.8) as a dynamic decision process resembling a knapsack problem, where Ht can
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only be rejected when the following constraint is satisfied:

Clfdrt � ↵  Ct := �
X

Hi2Rt�1

(Clfdri � ↵) , for t = 1, 2, · · · (2.9)

where Ct is the capacity (of the knapsack) at time t with the default choice C1 = 0. The

capacity may either expand or shrink over time, depending on the sequential decisions along

the data stream. This dynamic process can be described as follows. The initial capacity is

C1 = 0. Starting from t = 1, we reject Ht if (2.9) is fulfilled. If Ht with Clfdrt < ↵ is rejected,

then the capacity Ct increases by ↵ � Clfdrt (gain); hence we earn bonus room. By contrast,

if Ht with Clfdrt > ↵ is rejected, then Ct decreases by ↵� Clfdrt (loss).

The decision process (2.9) provides a new alpha–investing framework that precisely char-

acterizes the gains and losses in sequential testing. In contrast with the alpha–investing frame-

work in Foster and Stine (2008), which views each rejection as a gain of extra alpha–wealth,

the new characterization (2.9) reveals that not all rejections are created equal: rejections with

small Clfdr will lead to increased alpha–wealth whereas rejections with large Clfdr will lead to

decreased alpha–wealth. This view provides key insights for designing more powerful online

FDR rules. Moreover, the new AI framework reveals that utilizing Clfdr rules can automat-

ically avoid the “alpha–death” issue. Specifically, the process (2.9) can always reject new

hypotheses with Clfdr < ↵ regardless of the current budget, and can proceed in an ongoing

manner to any time point in the future.

2.5 Oracle–assisted adaptive learning and the SAST algorithm

To e�ciently allocate the alpha–wealth, we need to further refine the online algorithm (2.9)

to avoid making imprudent rejections that can potentially eat up all the budget. The specific

issue is referred to as “piggybacking” (Ramdas et al., 2017), which, in a vivid way, describes

the phenomenon that a string of bad decisions were made due to previously acquired budget.

To see the necessity of taking careful actions, suppose that we have accumulated some

bonus room over time before observing a very large Clfdrt satisfying (2.9). Although rejecting

Ht is an action that obeys the FDR constraint, the action can be unwise since it is possible
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that we can invest the extra “cost”, Clfdrt �↵, to make more discoveries at later time points.

A practical strategy is to incorporate a “barrier” �t and modify (2.9) as

Clfdrt < �t and Clfdrt � ↵  �
X

Hi2Rt�1

(Clfdri � ↵) . (2.10)

The barrier can e↵ectively prevent “piggybacking” by filtering out large Clfdrt and hence

saving budget for future.

The choice of �t depends on the pattern of future hypotheses. However, all online methods

must proceed without seeing the future. To resolve the issue, consider the oracle Clfdr rule

(2.6) that sees all data in a local neighborhood at once. If we assume that the hypothesis

stream is “locally stable” in its patterns, then �t may be informed by the oracle rule (2.6)

simultaneously conducted on a local neighborhood Nd(t) = {t� d� 1, · · · , t}. The rationale is

to use recent past data to get some ideas about the patterns of hypotheses to arrive in the near

future. Concretely, we first order {Hi : i 2 Nd(t)} according to their Clfdr values, then run the

“o✏ine” algorithm (2.6) to set the barrier �t = Clfdr(k+1). The online algorithm, by acting

as if it sees the future, can e↵ectively filter out large Clfdr values and hence avoid ine�cient

investments. The operation of algorithm (2.6) also implies that the barrier �t may be either

raised or lowered according to the varied ⇡t and ft in the dynamic model, which is desirable in

practice for dealing with inhomogeneous data streams. In Section 4.3, we illustrate that the

incorporating of the barrier can greatly reduce the MDR (2.3).

Finally, we present the proposed structure–adaptive sequential testing (SAST) rule (oracle

version with known parameters) in Algorithm 1. The SAST algorithm essentially utilizes the

sequential constraints (2.10) with barriers set by the o✏ine algorithm (2.6).

We can see that Algorithm 1 runs two parallel procedures: an online procedure for making

real–time decisions and an “o✏ine” procedure for determining the barrier. Thus the informa-

tion of every data point has been used twice: first Xt is used for real–time decision–making at

time t, then Xt is stored as past data so that we can “learn from experiences” via the o✏ine

oracle. The following theorem shows that Algorithm 1 is valid for online FDR control.

Theorem 1. Consider the online FDR procedure ��� = (�t : t 2 T), where �t is determined by
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Algorithm 1. The oracle SAST rule.

Intialization: A0 = ;, �0 = ↵.
Updating the barrier: Let Nd(t) = {t� d+ 1, · · · , t}. Sort {Clfdri : i 2 Nd(t)} from

the smallest to largest and denote the ordered statistics as {Clfdrt(1),Clfdr
t
(2), · · · }.

If Clfdrt(1) > ↵, keep the same barrier �t = �t�1. Otherwise let k = max{j : Qt(j)  ↵},
where Qt(j) = 1

j

Pj
i=1Clfdr

t
(i), and update the barrier as �t = Clfdrt(k+1).

Decision: Let Rt = {i  t : �i = 1} and denote |Rt| its cardinality. If Clfdrt < �t

and {|Rt�1|+ 1}�1
⇣P

i2Rt�1
Clfdri +Clfdrt

⌘
 ↵, then �t = 1. Otherwise �t = 0.

Algorithm 1. Denote ���t = (�i : i  t; i 2 T). Assume that the Clfdr values are known. Then

we have FDR
t(���t)  ↵, for all t 2 T.

3 Data-Driven SAST and Its Theoretical Properties

We first develop estimation methodologies and computational algorithms to implement the

SAST rule in Section 3.1, then establish the theoretical properties of the data-driven procedure

in Section 3.2.

3.1 Data-driven procedure and computational algorithms

We assume that the null distribution of z-values f0 is known, which is a standard practice in the

literature2. The key quantities remained to be estimated are ⇡t and ft(x). In our motivating

applications such as queries of QPDs and anomaly detection in high–frequency time series,

the databases or servers have already collected large amounts of data at the beginning of the

online FDR analysis. Let {X�K0 , · · · , X�1, X0} denote the available data and suppose we

start online testing at t = 1 with a data stream {X1, X2, . . .}3.

The conditional density ft can be estimated using standard (one–sided) bivariate kernel

2
In situations where the empirical null is more appropriate (Efron, 2004), f0 can be first estimated using the

method in Jin and Cai (2007) and then treated as known.
3
In situations where the online FDR analysis must start without prior data, we suggest applying existing

methods such as LOND first and then switch to SAST as more data are acquired.
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methods (Silverman, 1986):

f̂t(x) =

Pt�1
j=t�d+1Kht (j � t)Khx (xj � x)

Pt�1
j=t�d+1Kht (j � t)

, (3.1)

where d  K0 is the length of the moving window that includes a pre-specified number of

observations,K(t) is a kernel function, ht and hx are the bandwidths, withKh(t) = h�1K(t/h).

Remark 3. In analysis of large-scale high-frequency time series data such as the NYC taxi

data (Section 5), we can pre-specify d, say, to be 1000 to speed up the computation. This

virtually has no impact on the estimator f̂t (compared to using all previous data). Otherwise

we can always set d = t. Note that our estimator has followed the standard practice in density

estimation, which does not include Xt when estimating ft(x) at time t.

Next we propose a weighted screening approach to estimate the unknown proportion {⇡t :

t 2 T}. The key idea is to use a kernel, which weights observations by their distance to t, to

pool information from nearby time points. Let ht be the bandwidth4 and K a kernel function

satisfying
R
K(t)dt = 1,

R
tK(t)dt = 0 and

R
t2K(t)dt < 1. Consider a screening procedure

Tt(⌧) = {t� d+ 1  i  t� 1 : Pi > ⌧}, where ⌧ is a pre-specified threshold. We propose the

following estimator based on Cai et al. (2019):

⇡̂⌧
t = 1�

P
i2Tt(⌧)Kht (t� i)

(1� ⌧)
Pt�1

i=t�d+1Kht (t� i)
. (3.2)

Now we provide some intuitions of the estimator (3.2). First, at time t, define vh(t, i) =

Kht(|t� i|)/Kht(0). We can viewmt =
Pt�1

i=t�d+1 vh(t, i) as the “total” number of observations

at time t. Suppose we are interested in counting how many null p-values are greater than ⌧

among the mt “observations” at t. The empirical count is given by
P

i2T⌧ vh(t, i), whereas the

expected count is given by {
Pt�1

i=t�d+1 vh(t, i)}{1� ⇡t}(1� ⌧). Equation (3.2) can be derived

by first setting equal the expected and empirical counts and then solving for ⇡t. In Section

4
We recommend using the same ht in both (3.1) and (3.2) to stabilize the performance.
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3.2 we show that ⇡̂⌧
t is a consistent estimator of

⇡⌧
t = 1� (1� ⌧)�1P(Pt > ⌧), (3.3)

which always underestimates ⇡t and guarantees (conservative) FDR control (Propositions 1).

Remark 4. There is a bias-variance tradeo↵ in the choice of ⌧ for the proposed estimator ⇡̂⌧
t .

We shall see that when ⌧ increases, the “purity” of the screening subset T (⌧) increases, which

decreases the approximation bias of ⇡⌧
t (desirable). At the same time, when ⌧ increases, the

sample size for estimating ⇡⌧
t will decrease, thereby increasing the variance of the estimator

⇡̂⌧
t (undesirable). The common choice of ⌧ is 0.5. In Section 4.1, we discuss a data–driven

algorithm that chooses ⌧ adaptively.

Combining (3.1) and (3.2), we propose to estimate the Clfdr as

[Clfdrt = min

(
(1� ⇡̂⌧

t )f0(xt)

f̂t(xt)
, 1

)
, t 2 T. (3.4)

Our proposed data-driven rule implements Algorithm 1 by substituting [Clfdrt in place of

Clfdrt. The data-driven algorithm is summarized in Algorithm 2.

Algorithm 2. The data-driven SAST.

Initialization: R0 = ;, �0 = ↵.

Estimation: [Clfdrt = min
n

(1�⇡̂⌧
t )f0(xt)

f̂t(xt)
, 1
o
, where ⇡̂⌧

t and f̂t are defined by (3.2)

and (3.1), respectively.

Updating the barrier: LetNd(t) = {t�d+1, · · · , t}. Sort {[Clfdri : i 2 Nd(t)} from
the smallest to largest and denote the ordered statistics as {[Clfdr

t

(1), [Clfdr
t

(2), · · · }. If
[Clfdr

t

(1) > ↵, keep the same barrier �t = �t�1. Otherwise let k = max{j : Qt(j)  ↵},

where Qt(j) = 1
j

Pj
i=1

[Clfdr
t

(i), and update the barrier as �t = [Clfdr
t

(k+1).

Decision: Let Rt = {i  t : �i = 1} and denote |Rt| its cardinality. If [Clfdrt < �t

and {|Rt�1|+ 1}�1
⇣P

i2Rt�1
[Clfdri + [Clfdrt

⌘
 ↵, then �t = 1. Otherwise �t = 0.
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3.2 Theoretical properties of data–driven SAST

This section aims to show that the data–driven SAST procedure is asymptotically valid for

online FDR control. Our theoretical analysis is divided into three steps. The first step (Propo-

sition 1) shows that a hypothetical rule, which substitutes

Clfdr⌧t =
(1� ⇡⌧

t )f0(xt)

ft(xt)
(3.5)

in place of Clfdrt in Algorithm 1, is conservative for online FDR control.

Proposition 1. Consider ⇡⌧
t defined by (3.3), then we have ⇡⌧

t  ⇡t and Clfdrt  Clfdr
⌧
t .

Hence the hypothetical rule using (3.5) is valid (and conservative) for online FDR control.

The second step (Proposition 2) shows that \Clfdrt is a consistent estimator of Clfdr⌧t .

We prove the result by appealing to the infill–asymptotics framework (Stein, 2012), which

converts the set of time points {1, 2, · · · , t} on a growing domain to a set of points that lie

on a fixed-domain regular grid: {1
t ,

2
t , ...,

t�1
t , 1}. The discussions in Stein (2012) indicate that

the in-fill model is equivalent to the growing domain model under mild conditions: When

t ! 1, the asymptotic arguments, which respectively correspond to letting the grid become

denser and denser in the fixed interval (0, 1] and letting the domain {1, 2, · · · , t} to grow to

infinity, can be essentially established in the same manner. We state the fixed domain theory

as it naturally connects to the familiar density estimation theory, where the notations and

regularity conditions are standard and easy to understand. The growing domain version of

the theory is briefly discussed in Appendix B.3.

We can similarly define the bivariate density estimator and the following conditional pro-

portion estimator:

⇡̂⌧
t = 1�

P
i2Tt(⌧)Kht (1� i/t)

(1� ⌧)
Pt�1

i=t�d+1Kht (1� i/t)
. (3.6)

The two estimators (3.2) and (3.6) are essentially identical (with rescaled bandwidths).

We state the following regularity conditions. Condition (A1) requires that ft(x) is smooth

in t. Conditions (A2) to (A4) are standard in density estimation theory; see, for example,

(Wand and Jones, 1994).
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(A1): For any s 2 (0, 1] and ✏ > 0, 9� such that if |s � s0|  �, s0 2 (0, 1] then
R
|fs(x) �

fs0(x)|dx < ✏.

(A2): hx ! 0, ht ! 0 and thxht ! 1.

(A3): fj(x) < C and
R
|f 00

j (x)|dx < C for all j.

(A4): dht ! 1 and d � ctht for some c > 0.

Proposition 2. Suppose (A1)–(A4) hold, then [Clfdrt
p�! Clfdr

⌧
t .

In the third step of our theoretical analysis (Theorem 2), we establish the asymptotic

validity of the data-driven SAST procedure for online FDR control.

Theorem 2. Assume the conditions in Proposition 2 hold. Then for any given time t, the

data-driven SAST rule (Algorithm 2) controls the FDR
t
at level ↵ asymptotically.

3.3 Theory for data streams with fixed distributions

SAST learns from past decisions and improves its performance over time through the assis-

tance from an o✏ine oracle. The barrier �t would become more informative as more tests

are conducted. Specifically, the initial barrier is set to be ↵ at time t = 1, which is very

conservative. In the special case when the mixture model has fixed ⇡t and ft over time, we

can show that the barrier �t would converge to �OR, where �OR is the optimal threshold of

the “o✏ine” oracle procedure in Section 2.2. Hence, provided that the capacity allows, the

operation of (2.10) implies that SAST behaves like an oracle that sees all data points (includ-

ing future ones). Our numerical results show that the FDR levels of SAST are conservative

at the beginning but the FDR becomes closer to ↵ as we sequentially update the barrier with

information from more time points.

Theorem 3. Assume conditions from Theorem 2 holds. Then under the model with ⇡t ⌘ ⇡

and ft ⌘ f , the data-driven barrier �̂t ! �OR when t ! 1, where �OR is the optimal threshold

of the oracle FDR procedure for simultaneous testing defined in Section 2.2.
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4 Simulation

In this section, we first provide some details in implementation. Simulation studies are con-

ducted in Section 4.2 to compare the oracle and data-driven SAST procedures with other

existing online FDR rules. Section 4.3 presents an example to illustrate the merit of including

a barrier in online sequential testing.

4.1 Implementation Details

In our simulation, the conditional density function f̂t(x) is estimated using R function density,

where the bandwidths hx and ht are chosen based on Silverman (1986). A key step in the

SAST algorithm is to estimate ⇡̂⌧ . We propose to choose a data-driven ⌧BH by running BH

at ↵ = 0.5. Roughly speaking, in the subset T̃t(⌧BH) = {t� d+ 1  i  t� 1 : Pi < ⌧}, 50%

of the cases come from the null (e.g. the expected proportion of false positives made by BH).

It is anticipated that in the remaining set Tt(⌧) = {t � d + 1  i  t � 1 : Pi > ⌧BH}, which

is used to construct our estimator, majority of the cases should come from the null. This

data-driven scheme ensures a small bias in approximation, while maintaining a larger sample

size compared to the standard choice of ⌧ = 0.5.

4.2 Comparisons of online FDRs and MDRs

We compare the proposed SAST procedure with its competitors for online FDR control. The

following methods are included in the comparison:

• SAST with known ⇡t and ft (SAST.OR, Algorithm 1)

• SAST with estimated model parameters (SAST.DD, Algorithm 2)

• LOND: the method proposed by Javanmard, A. and Montanari, A. (2016).

• LORD++: the GAI++ rule proposed by Ramdas et al. (2017).

For the general simulation setup, we choose m = 5000 and the pre-specified FDR level

18



↵ = 0.05. The data are simulated from the following model:

Xt ⇠ (1� ⇡t)N(0, 1) + ⇡tN(µ, 1).

For the data–driven method, we need an initial burn–in period. In simulation we generate

500 data points prior to t = 1 to form an initial density estimate. The varying density and

proportion estimates are updated every 200 time points. The following simulation settings are

considered:

1. Block Pattern: ⇡t = 0.01, for t 2 (1, 1000][ (1200, 2000][ (2200, 3000][ (3200, 4000][

(4200, 5000]; ⇡t = 0.6, for t 2 (1000, 1200] [ (2000, 2200]; ⇡t = 0.8, for t 2 (3000, 3200] [

(4000, 4200]. Vary µ from 2 to 4.2 with step size 0.2.

2. Constant Pattern: ⇡t = 0.05, t = 1, · · · ,m. Vary µ from 2 to 4.2 with step size 0.2.

3. Linear Pattern: Vary ⇡t linearly from 0 to 0.5. Vary µ from 2 to 4.2 with step size 0.5.

4. Sine Pattern: ⇡t = (sin 2⇡t
m + 1)/4, ⇡t ranges between 0 to 0.5, vary µ from 2 to 4.2

with step size 0.5.

We apply di↵erent methods at ↵ = 0.05. The empirical FDR and MDR levels are evaluated

using the average of the false discovery proportions and missed discovery proportions from 1000

replications. To investigate the performance of di↵erent methods in the online setting, we

display the empirical FDRt and MDRt levels at various time points, where the intermediate

evaluation points ranges from 1500 to 5000 with step size 500. The results for block and

constant patterns are summarized in Figure 2, and the results for the linear and sine patterns

are summarized in Figure 3.

The following observations can be made from the simulation results.

(a) All methods control FDRt at the nominal level at all decision points being considered.

SAST.OR achieves the nominal level very precisely. SAST.DD is conservative. LOND

and LORD++ are more conservative compared to SAST.DD.
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Figure 2: Simulation results for Settings 1 and 2: signal proportions are varied in a block
fashion and kept constant respectively. Various signal strengths are investigated as well. Our
data-driven and oracle procedures provide significantly more power while controlling FDR
under the nominal level in comparison with others.
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Figure 3: Simulation results for Settings 3 and 4: signal proportions are varied in linear and
sine patterns, respectively. Our data-driven and oracle procedures provide significantly more
power while controlling FDR under the nominal level in comparison with others.
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(b) SAST.DD is inferior compared to SAST.OR. This is largely due to the conservativeness

of the estimator ⇡̂⌧
t . The gap in the performances between SAST.DD and SAST.OR

narrows as the signal strength becomes stronger, in which situation the estimator ⇡̂⌧
t

becomes more precise.

(c) In general LOND can be much improved by LORD++, which can be further improved by

SAST.DD. The gap in power performances between SAST.DD and LORD++ narrows

as the signal strength becomes stronger, in which situation it is easier to separate the

signals from null cases.

(d) When ⇡t is fixed over time, the signals arrive at a constant rate and there is no informative

structural information in the data stream (Setting 2: constant pattern). SAST.DD still

outperforms LOND and LORD++ because our AI framework based on Clfdr precisely

characterizes the gains and losses of di↵erent decisions; this not only leads to more precise

FDR control but also optimizes the alpha–wealth allocation in the online setting.

4.3 E↵ects of the barrier

This section presents a toy example to illustrate that the barrier, which aims to prevent the

“piggybacking” issue (Ramdas et al., 2017), can greatly reduce the MDR by allocating existing

alpha–wealth in a more cost–e↵ective way. Consider the previous block structured setting

(Setting 1 in Section 4.2). Figure 4 shows the FDR and MDR comparisons for the following

methods at FDR level ↵ = 0.05: (i) oracle SAST rule (OR); (ii) oracle SAST rule with no

barrier (OR nob); (iii) data-driven SAST rule with estimated parameters (DD, Section 3);

(iv) data-driven SAST rule with no barrier (DD nob).

We can see from the comparison that although the FDR levels between the two oracle

methods are roughly the same, the MDR levels are greatly reduced by incorporating the barrier

(hence the alpha–wealth is invested more e�ciently). The same patterns can be observed for

the two data-driven procedures.
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Figure 4: The incorporation of the barrier greatly reduces the MDR levels.

5 Applications

Online FDR rules are useful for a wide range of scenarios. We discuss two applications,

respectively for anomaly detection in large–scale time series data and genotype discovery under

the QPD framework.

5.1 Time series anomaly detection

The NYC taxi dataset can be downloaded from the Numenta Anomaly Benchmark (NAB)

repository (Ahmad et al., 2017), which contains useful tools and datasets for evaluating algo-

rithms for anomaly detection in streaming, real–time applications. The dataset records the

counts of NYC taxi passengers every 30 minutes from July 1, 2014 to January 31, 2015, during

which period five known anomalies had occurred (the NYC marathon, Thanksgiving, Christ-

mas, New Years day and a snow storm). In Figure 5, we plot the time series, with the known

anomalous intervals displayed in red rectangles.

We formulate the anomaly detection problem as an online sequential multiple testing prob-

lem. The basic setup can be described as follows. The null hypothesis Ht corresponds to no

anomaly at time t. We claim that an anomaly occurs at t if Ht is rejected. A rejection within

the red intervals is considered to be a true discovery.

The application of online FDR rules requires summarizing the stream of counts data as

a sequence of p-values or CLfdr statistics. However, directly calculating the p-values based
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Figure 5: NYC Taxi passenger count time series from July 1st 2014 to Jan 31st 2015. Blue
lines are Loess smoothed time series indicating the overall trend change.

on this dataset would be problematic as the data demonstrate strong trend and seasonality

patterns. We first use the R package stlplus to carry out an STL decomposition (Seasonal

Trend decomposition using Loess smoothing; Cleveland et al., 1990) to remove the seasonal and

trend components. The residuals, displayed in the top 3 rows of Figure 6, are standardized and

modeled using a two-component mixture (2.1). However, as can be seen from the histogram

at the bottom of Figure 6, the null distribution is approximately normal but deviates from

a standard normal. Following the method in Jin and Cai (2007), we estimate the empirical

null distribution as N(0.028, 0.618). We apply the BH (pretending all observations are seen

at once), LOND, LORD++ and SAST.DD at FDR level 0.0001. For the SAST.DD method,

the neighborhood size d and initial burn-in period are both chosen to be 500. In calculating

the Clfdr, f0(x) is taken as the density of the estimated empirical null F̂0. Moreover, the

p-values are obtained by the formula Pi = 2F̂0(�|Zi|), where z-scores are computed based on

the residuals. Figure 7 summarizes the anomaly points detected by di↵erent methods.

We can see that for the several anomaly time periods labeled, SAST can detect more points

than other methods. Table 1 summarizes the total number of rejections within the labeled

time windows. It may appear counter-intuitive that SAST, being an online procedure, rejects
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Method Number of Discoveries
O✏ine BH procedure 179

Online SAST.DD (Proposed) 201
Online LOND 137

Online LORD++ 178

Table 1: Number of discoveries made by various online and o✏ine FDR procedures for the
NYC taxi dataset, nominal FDR level at 0.0001.

more null hypotheses than the o✏ine BH procedure. The reason is that the anomalies tend

to appear in clusters. This structural information is captured by the Clfdr statistic, which

forms the building block of SAST and leads to improved power in detecting structured signals

(Section 2.3).

5.2 IMPC dataset Genotype Discovery

In this section, we demonstrate the SAST procedure on a real dataset from the International

Mouse Phenotyping Consortium (IMPC). This dataset, which has been analyzed in Karp et al.

(2017), involves a large study to functionally annotate every protein coding gene by exploring

the impact of gene knockouts. This dataset and resulting family of hypotheses are constantly

growing as new results come in. Karp et al. (2017) tested both the roles of genotype and sex

as modifiers of genotype e↵ects, resulting in two sets of p-values: one set for testing genotype

e↵ects, and the other for sexual dimorphism. This dataset has been widely used for comparing

online FDR algorithms. Currently it is available as one of the application datasets in the

R-package OnlineFDR that implements methods such as LORD, LOND and LORD++. In

order to implement our proposed SAST procedure, we need the original z-scores instead of p-

values. However, the directions of e↵ects cannot be determined based on p-value alone. Hence,

we transform the p-values into z-scores by introducing a Bernoulli random variable to ensure

asymptotic symmetry around 0: z = X��1(p/2)� (1�X)��1(p/2), where X ⇠ Ber(0.5)5.

Table 2 summarizes the total number of discoveries made by each method. We can see that

SAST makes more discoveries than other alpha–investing methods. Similar to the analysis

5
We recommend that in the future the biomedical community should report, in addition to p-values, the

e↵ect sizes. Thus we also know the direction and magnitude of an interesting signal. In fact, converting z-scores
to p-values may lead to loss of information (cf. Sun and Cai, 2007).
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Figure 6: Top three rows: Time series of remainder component from STL decomposition
with the known anomaly regions marked in red rectangles. Bottom row: Histogram of the
remainder term from STL decomposition, the red curve indicates the estimated empirical null
distribution N(0.028, 0.618).
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Figure 7: Anomaly points detected by various algorithms, our data-driven SAST procedure
detects the most anomaly points within the labeled window marked by red rectangles. Nominal
significance level chosen as 0.0001.

in Section 5, SAST rejects more hypotheses than the o✏ine BH procedure. One possible

explanation is that Clfdr is more powerful than p-values since it captures useful structural

information in the data stream.
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Method Genotype Method type
SAST 12975 online
BH 12907 o✏ine

LORD++ 8517 online
LOND 2905 online

Fixed threshold 0.0001 4158 online

Table 2: Number of discoveries made by various online and o✏ine FDR procedures for the
IMPC dataset on Genotypes, nominal FDR level at 0.05.
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Online Supplementary Material for “Structure–Adaptive

Sequential Testing for Online False Discovery Rate Control”

This supplement contains the proofs of main theorems (Section A), other theoretical results

(Section B), and optimality theory on simultaneous testing (Section C).

A Proof of main theorems

A.1 Proof of Theorem 1

Note that the Clfdr is defined as Clfdri = P(✓i = 0|Xi). Then by the definition of FDR and

double expectation theorem, we have:

FDRt = EX

(
(|Rt| _ 1)�1

X

i2Rt

Clfdri

)
.

By construction of the decision rule, (|Rt| _ 1)�1P
i2Rt

Clfdri  ↵ for all realization of XXX. It

follows that FDRt  ↵.

A.2 Proof of Theorem 2

We need the following lemma:

Lemma 1. Suppose an
p�! 0 and |an| is bounded for all n, then lim

n!1

Pn
i=1 ai
n

p�! 0.

The proof of lemma 1 is elementary thus omitted. By definition of our algorithm, if

[Clfdrt  ↵ then �t = 1. Note that, for any ✏ > 0,

P
( 1X

i=1

I(Clfdr⌧i < ↵� ✏) < 1
)

= P
( 1[

M=1

1X

i=1

I(Clfdr⌧i < ↵� ✏) < M

)


1X

M=1

P
( 1X

i=1

I(Clfdr⌧i < ↵� ✏) < M

)
.

1



Note that Clfdri is a random variable from random mixture model (2.1) with a non-vanishing

proportion of nonzero signals, we have

P
( 1X

i=1

I(Clfdr⌧i < ↵� ✏) < M

)
= 0

for every M . We have P {
P1

i=1 I(Clfdr⌧i < ↵� ✏) < 1} = 0. Now,
P1

i=1 I([Clfdri  ↵) < 1

would imply |[Clfdri�Clfdr⌧i | > ✏ infinitely many times. By Proposition 2, P(|[Clfdri�Clfdr⌧i | >

✏) ! 0. It follows that P
nP1

i=1 I([Clfdri  ↵) < 1
o
= 0, hence |Rt| ! 1. By Proposition 2

and Lemma 1, we have P
i2Rt

[Clfdri � Clfdr⌧i
|Rt|

p�! 0.

Finally, the operation of Algorithm 2 implies that

P
i2Rt

[Clfdri
|Rt|

 ↵, It follows that

FDR(���) = EX

P
i2Rt

Clfdri
|Rt|

�
 EX

P
i2Rt

Clfdr⌧i
|Rt|

�
= EX

"P
i2Rt

[Clfdri
|Rt|

#
+o(1)  ↵+o(1).

A.3 Proof of theorem 3

Note when both ft and ⇡t are fixed over time, the Clfdr statistic reduces to Lfdri :=
(1�⇡)f0(xi)

f(xi)
.

The optimal threshold in the o✏ine simultaneous testing setup would be independent of time

t and the chosen neighborhood. The oracle o✏ine rule coincides with the oracle procedure

described in Section 3.2 of Sun and Cai (2007).

We now introduce some notations:

• Û t(�) = t�1Pt
i=1([Clfdr(i) � ↵)I\{Clfdr(i) < �}

• U t(�) = t�1Pt
i=1(Clfdr

⌧
(i) � ↵)I{Clfdr⌧(i) < �}.

• U t
1(�) = E{(Clfdr⌧ � ↵)I{Clfdr⌧ < �}}.

• �1 = sup{� 2 (0, 1), U t
1(�)  0} is the “ideal” threshold.

Note that Û t is discrete. To facilitate the theoretical analysis, we define, for [Clfdr(i) < � <

2



[Clfdr(i+1), a continuous version of Û t:

Û t
C(�) =

� � [Clfdr(i)
[Clfdr(i+1) � [Clfdr(i)

Û t
i +

[Clfdr(i+1) � �

[Clfdr(i+1) � [Clfdr(i)
Û t
i+1,

where Û t
i = Û t([Clfdr(i)). It is easy to verify that Û t

C is continuous and monotone. Hence its

inverse Û t,�1
C is well defined, continuous and monotone.

Next we show the following two results in turn: (i) Û t(�)
p�! U t

1(�) and (ii)Û t,�1
C (0)

p�! �1.

Proof of (i). Note that U t(�)
p�! U t

1(�) by the WLLN, so that we only need to establish

that Û t(�)
p�! U t(�). We need to following lemma:

Lemma 2. Let Vi = (Clfdr⌧i � ↵)I(Clfdr⌧i < �) and V̂i = ([Clfdri � ↵)I{[Clfdri < �}. Then

E
⇣
V̂i � Vi

⌘2
= o(1).

Proof of Lemma 2. Using the definitions of V̂i and Vi, we can show that

⇣
V̂i � Vi

⌘2
=
⇣
[Clfdri � Clfdr⌧i

⌘2
I
⇣
[Clfdri  �,Clfdr⌧i  �

⌘
+
⇣
[Clfdri � ↵

⌘2
I
⇣
[Clfdri  �,Clfdr⌧i > �

⌘

+ (Clfdr⌧i � ↵)2 I
⇣
[Clfdri > �,Clfdr⌧i  �

⌘
.

Let us refer to the three sums on the right hand as I, II, and III respectively. By step 2 in

the proof of Theorem 2, I = o(1). Then let " > 0, and consider that

P
⇣
[Clfdri  �,Clfdr⌧i > �

⌘
 P

⇣
[Clfdri  �,Clfdr⌧i 2 (�, � + ")

⌘
+ P

⇣
[Clfdri  t,Clfdr⌧i � � + "

⌘

 P {Clfdr⌧i 2 (�, � + ")}+ P
⇣���Clfdr⌧i � [Clfdri

��� > "
⌘

The first term on the right hand is vanishingly small as " ! 0 because [Clfdri is a continuous

random variable. The second term converges to 0 by Proposition 2. Noting that 0  [Clfdri  1,

we conclude II = o(1). In a similar fashion, we can show that III = o(1), thus proving the

lemma.

3



Let St =
Pt

i=1(V̂i � Vi), by Lemma 2 and the Cauchy-Schwartz inequality,

E
n⇣

V̂i � Vi

⌘⇣
V̂j � Vj

⌘o
= o(1).

It follows that

V ar
�
t�1St

�
=t�2V ar(St)  t�2

tX

i=1

E
⇢⇣

V̂i � Vi

⌘2�

+O

0

@ 1

t2

X

i,j:i 6=j

E
n⇣

V̂i � Vi

⌘⇣
V̂j � Vj

⌘o
1

A

=o(1).

By Proposition 2, E
�
t�1St

�
! 0, applying Chebyshev’s inequality, we obtain

t�1St = Û t � U t p�! 0,

establishing (i).

Proof of (ii). Since Û t
C is continuous, for any ✏ > 0, we can find ⌘ > 0 such that

���Û t,�1
C (0)� Û t,�1

C

n
Û t
C (�1)

o��� < " if
���Û t

C (�1)
��� < ⌘. It follows that

P
n���Û ⌧

C (�1)
��� > ⌘

o
� P

n���Û t,�1
C (0)� Û t,�1

C

n
Û t
C (�1)

o��� > "
o
.

Proposition 2 and the WLLN imply that Û t
C(�)

p! U t
1(�). Note that U t

1 (�1) = 0, then,

P
⇣���Û t

C (�1)
��� > ⌘

⌘
! 0.

Hence, we have

Û t,�1
C (0)

p! Û t,�1
C

n
Û t
C (�1)

o
= �1, (A.1)

completing the proof of (ii).
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B Proof of propositions

B.1 Proof of Proposition 1

Let A⌧ = {x : P0(x) > ⌧}, where P0(x) is the p-value of x. Then

(1� ⌧)�1P(Pt > ⌧) = (1� ⌧)�1
Z

A⌧

f0(x)(1� ⇡t) + ⇡tf1t(x)dx

� (1� ⌧)�1
Z

A⌧

f0(x)(1� ⇡t)dx

= (1� ⇡t).

Hence ⇡⌧
t = 1 � (1 � ⌧)�1P(Pt > ⌧)  1 � (1 � ⇡t) = ⇡t. By definition of Clfdrt, we have

Clfdr⌧t � Clfdrt.

Let ���⌧OR be the decision rule described in Algorithm 1 with Clfdr⌧t used in place of Clfdrt.

Let R be the index set of hypotheses rejected by ���⌧OR. The FDR of ���⌧OR is

FDR(���⌧OR) = E
⇢P

iR(1� ✓i)

|R _ 1|

�

= EXXX


E
⇢P

iR(1� ✓i)

|R _ 1|

����X
��

= EX

 
1

|R _ 1|
X

i2R
Clfdri

!
.

Since Clfdr⌧t � Clfdrt, it follows that

FDR(���⌧OR)  EX

 
1

|R _ 1|
X

i2R
Clfdr⌧i

!
 ↵.

The last inequality is due to the definition of ���⌧OR which guarantees that

1

|R _ 1|
X

i2R
Clfdr⌧i  ↵.
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B.2 Proof of Proposition 2

Under the in-fill model, we write

f̂t(x) =

Pt�1
j=t�d+1Kht (1� j/t)Khx (xj � x)

Pt�1
j=t�d+1Kht (1� j/t)

.

We first state 3 lemmas that will be proved in turn.

Lemma 3. Under the assumption of Proposition 2, E
R n

f̂t(x)� ft(x)
o2

dx ! 0.

Lemma 4. Under the assumptions of Proposition 2,

Ek⇡̂⌧
t � ⇡⌧k2 = E

Z
{⇡̂⌧

t (x)� ⇡⌧ (x)}2dx ! 0.

Lemma 5. Let ⇡̂⌧
t , f̂t(x), and f̂0 be estimates such that Ek⇡̂⌧

t �⇡⌧
t k2 ! 0, Ekf̂t(x)�ft(x)k2 !

0, Ekf̂0 � f0k2 ! 0, and then Ek[Clfdrt � Clfdr
⌧
t k2 ! 0.

By Lemma 3 and Lemma 4, together with the fact that f0 is known, it follows from Lemma

5 that Ek[Clfdrt � Clfdr⌧t k2 ! 0. Since convergence in second order mean implies convergence

in probability, we have

[Clfdr
⌧

t
p�! Clfdr⌧t .

B.3 Growing domain version of Proposition 2

In the growing domain framework, Proposition 2 takes the following form:

Proposition 3. Suppose:

(A1’): For any ✏ > 0, 9T such that for all integers i, j on the interval

hj
t�

p
log(t)ht

k
, t
i
,t >

T , we have
R
|fi(x)� fj(x)|dx < ✏.

(A2’): hx ! 0, ht  t and hxht ! 1.

(A3’): fj(x) < C and
R
|f 00

j (x)|dx < C for all j.

(A4’): d � cht for some c > 0.

We have [Clfdrt
p�! Clfdr

⌧
t .

The proof follows the same line as the proof of proposition 2, thus omitted.
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B.4 Proof of Lemma 3

We first compute Ef̂t(x) � ft(x). Note that EKhx(Xj � x) =
R
K(z)fj(x � hxz)dz. Using

Taylor expansion, we have

fj(x� hxz) = fj(x)� hxzf
0
j(x) +

1

2
h2xz

2f
00
j (x) + o(h2x).

It follows that

EKhx(Xj � x)� ft(x) = fj(x)� ft(x) +
1

2
h2xf

00
j (x)

Z
z2K(z)dz + o(h2x).

Let A =
Pt�1

j=t�d+1

n
Kht(1� j/t)12h

2
xf

00
j (x)

R
z2K(z)dz +Kht(1� j/t)o(h2x)

o
. Then

Ef̂t(x)� ft(x) =

Pt�1
j=t�d+1Kht(1�

j
t ){fj(x)� ft(x)}+A

Pt�1
j=t�d+1Kht(1�

j
t )

.

Z
|Ef̂t(x)� ft(x)|dx = O

(Pt�1
j=t�d+1Kht(1� j/t)

R
|fj(x)� ft(x)|dx

Pt�1
j=t�d+1Kht(1� j/t)

)
+ o(h2x) ! 0.

To see why the last expression goes to 0, note that for any ✏ > 0, by Assumption (A1), we can

take � such that for all i > (1� �)t,
R
|fi(x)� ft(x)|dx < ✏. Hence,

Pt�1
j=t�d+1Kht(1� j/t)

R
|fj(x)� ft(x)|dx

Pt�1
j=t�d+1Kht(1� j/t)

=

Pb(1��)tc
j=t�d+1Kht(1� j/t)

R
|fj(x)� ft(x)|dx

Pt�1
j=t�d+1Kht(1� j/t)

+

Pt�1
j=b(1��)tc+1Kht(1� j/t)

R
|fj(x)� ft(x)|dx

Pt�1
j=t�d+1Kht(1� j/t)


Pb(1��)tc

j=t�d+1Kht(1� j/t)
Pt�1

j=t�d+1Kht(1� j/t)
+ ✏.

Note that ht ! 0, we conclude that
Pb(1��)tc

j=t�d+1Kht(1 � j/t) = O
nR 1

� Kht(x)dx
o

! 0. Also,

since dht ! 1 as t ! 1, we have
Pt�1

j=t�d+1Kht(1� j/t) � c0h�1
t for some c0.

7



Thus

Pb(1��)tc
j=t�d+1Kht(1� j/t)

Pt�1
j=t�d+1Kht(1� j/t)

! 0, and

lim
t!1

Pt�1
j=t�d+1Kht(1� j/t)

R
|fj(x)� ft(x)|dx

Pt�1
j=t�d+1Kht(1� j/t)

= 0.

It follows from the boundedness of Ef̂t and ft(x) that

Z
|Ef̂t(x)� ft(x)|2dx ! 0. (B.2)

Next we compute Var
n
f̂t(x)

o
:

Var {Khx(Xj � x)} =
1

hx

Z
K(z)2fj(x� hxz)dz � {fj(x) + o(1)}2

=
1

hx

Z
K(z)2(fj(x) + o(1))dz � {fj(x) + o(1)}2

= O

⇢
1

hx

Z
K(z)2dzfj(x)

�
+ o(h�1

x ).

Some additional calculations give

Varf̂t(x) =

Pt�1
j=t�d+1{Kht(1� j/t)}2O

n
1
hx

R
K(z)2dzfj(x)

o

{
Pt�1

j=t�d+1Kht(1� j/t)}2

= O

2

64(thx)�1

R 1
0 K2

ht
(x)dx

nR d/t
0 Kht(x)dx

o2

3

75

= O

2

4(thxht)�1/

(Z d/t

0
Kht(x)dx

)2
3

5

Therefore, by assumption (A3) and (A4),

Z
Varf̂t(x)dx = O

�
(ththx)

�1
 
! 0. (B.3)

Since E
R
{f̂t(x)�ft(x)}2 =

R
{Ef̂t(x)�ft(x)}2+Var{f̂t(x)}dx, (B.2) and (B.3) together imply

that E
R
{f̂t(x)� ft(x)}2 ! 0.
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B.5 Proof of lemma 4

Define P̂(Pt > ⌧) :=
P

i2Tt(⌧) Kht (1�i/t)
Pt�1

i=t�d+1 Kht (1�i/t)
. Let Pt be the p-value of Xt. We will show

EkP̂(Pt > ⌧)� P(Pt > ⌧)k2 ! 0. (B.4)

We first rewrite the term

P
i2Tt(⌧)Kht (1� i/t)

Pt�1
i=t�d+1Kht (1� i/t)

=

P
i2Tt(⌧)Kht (1� i/t) I(P (xi) > ⌧)

Pt�1
i=t�d+1Kht (1� i/t)

.

By Lemma 3 we have, E
R
B f̂t(x) � ft(x)dx ! 0 for every B. In particular, take B = {x :

P (x) > ⌧} use the definition of f̂t we have

Pt�1
j=t�d+1Kht (1� j/t)E

R
P (x)>⌧ Khx (xj � x) dx

Pt�1
j=t�d+1Kht (1� j/t)

! P(Pt > ⌧). (B.5)

To show the lemma, it is su�cient to show

E
Z

P (x)>⌧
Khx (xj � x) dx ! E {I(P (xj) > ⌧)} . (B.6)

To see why (B.6) implies (B.4), note that (B.6) implies

Pt�1
i=t�d+1 (1� j/t)E

R
P (x)>⌧ Khx (xj � x) dx

Pt�1
i=t�d+1Kht (1� j/t)

!
Pt�1

i=t�d+1Kht (1� j/t)E {I(P (xj) > ⌧)}
Pt�1

i=t�d+1Kht (1� j/t)
.

(B.7)

Next note that

E
(Pt�1

i=t�d+1Kht (1� i/t) I(P (xi) > ⌧)
Pt�1

i=t�d+1Kht (1� i/t)

)
=

Pt�1
i=t�d+1Kht (1� j/t)E {I(P (xj) > ⌧)}

Pt�1
i=t�d+1Kht (1� j/t)

, and

9



Var

(Pt�1
i=t�d+1Kht (1� i/t) I(P (xi) > ⌧)

Pt�1
i=t�d+1Kht (1� i/t)

)
= O

2

64t�1

R 1
0 K2

ht
(x)dx

nR d/t
0 Kht(x)dx

o2

3

75

= O

2

4(tht)�1/

(Z d/t

0
Kht(x)dx

)2
3

5 .

By (A4), we have
nR 1

0 Kht(x)dx
o2

� c for some constant c > 0. Now tht ! 1, implies

Var

⇢Pt�1
i=t�d+1 Kht (1�i/t)I(P (xi)>⌧)

Pt�1
i=t�d+1 Kht (1�i/t)

�
! 0.

By Chebyshev’s inequality,

Pt�1
i=t�d+1Kht (1� i/t) I(P (xi) > ⌧)

Pt�1
i=t�d+1Kht (1� i/t)

p�!
Pt�1

i=t�d+1Kht (1� j/t)E {I(P (xj) > ⌧)}
Pt�1

i=t�d+1Kht (1� j/t)
.

Combining (B.7) , (B.5), (A1) and (A2),

P̂(Pt > ⌧) =

Pt�1
i=t�d+1Kht (1� i/t) I(P (xi) > ⌧)

Pt�1
i=t�d+1Kht (1� i/t)

p�! P(Pt > ⌧).

Therefore (B.4) follows.

We now show (B.6). Let ✏ =
p
hx. Write

E
Z

P (x)>⌧
Khx (xj � x) dx = E

Z

P (x)>⌧,|xj�x|<✏
Khx (xj � x) dx+E

Z

P (x)>⌧,|xj�x|>✏
Khx (xj � x) dx.

Use the normal tail bound,

Z

P (x)>⌧,|xj�x|>✏
Khx (xj � x) dx 

Z

|xj�x|>✏
Khx (xj � x) dx

 2 exp{�1/(2hx)} ! 0.

10



Define A⌧ = {xj : P (xj) > ⌧}, let fj be the density function for Xj . Note that

E
Z

P (x)>⌧,|xj�x|<✏
Khx (xj � x) dx =

Z 1

�1

Z

P (x)>⌧,|xj�x|<✏
Khx (xj � x) fj(xj)dxdxj

=

Z

A⌧±✏

Z

|xj�x|<✏
Khx (xj � x) dxfj(xj)dxj

=

Z

A⌧±✏
[1�O{2 exp(�1/(2hx))}]fj(xj)dxj

!
Z

A⌧

fj(xj)dxj = E {I(P (xj) > ⌧)} .

Hence (B.6) is proved. The lemma follows.

B.6 Proof of lemma 5

Note that ft(x) is continuous and positive on the real line, then there exists K1 = [�M,M ]

such that P(x 2 Kc
1) ! 0 as M ! 1.

Let infx2K1 ft(x) = l0 and Aft
✏ = {x : |f̂t(x)� ft(x)| � l0/2}. Note that

Ekf̂t(x)� ft(x)k2 � (l0/2)
2P(Aft

✏ ), then P(Aft
✏ ) ! 0,

we claim that ft and f̂t are bounded below by a positive number for large t except for an event

that has a low probability. Similar arguments can be applied to the upper bound of f̂t and ft,

as well as the cases for f0 and f̂0. Therefore, we conclude that f0, f̂0 , ft, and f̂t are all bounded

in the interval [la, lb], 0 < la < lb < 1 for large t except for an event A✏ that has probability

tends to 0. Hence 0 < la < infz2A✏ min{f0, f̂0, ft, f̂t} < supz2Ac
✏
max{f0, f̂0, ft, f̂t} < lb < 1.

Next note that

[Clfdr
⌧

t � Clfdrt =
f̂0ft(⇡⌧

t � ⇡̂⌧
t ) + (1� ⇡⌧

t )f(f̂0 � f0) + (1� ⇡⌧
t )f0(ft � f̂t)

f̂tft
,

we conclude that

⇣
[Clfdr

⌧

t � Clfdr⌧t

⌘2
 c1 (⇡

⌧
t � ⇡̂⌧

t )
2 + c2

⇣
f̂0 � f0

⌘2
+ c3

⇣
f̂t � ft

⌘2
in Ac

✏.
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It is easy to see that k[Clfdr
⌧

t � Clfdr⌧t k2 is bounded by some constant L, then

Ek[Clfdr
⌧

t � Clfdr⌧t k2  LP(A✏) + c1Ek⇡̂⌧
t � ⇡⌧

t k2 + c2Ekf̂t � ftk2 + c3Ekf̂0 � f0k2.

According to the assumptions, we further have that for a given ✏ > 0, there exists M 2 Z+

such that we can find A✏, P(A✏) < ✏/(4L), and at the same time Ek⇡̂⌧
t � ⇡⌧

t k2 < ✏/(4c1),

Ekf̂t � ftk2 < ✏/(4c2), and Ekf̂0 � f0k2 < ✏/(4c3) for all t � M . Consequently, we have

Ek[Clfdr
⌧

t � Clfdr⌧t k2 < ✏ for t � M , and the desired result follows.

C Optimality of the Clfdr rule in simultaneous testing

The optimality of the Clfdr rule in simultaneous testing is summarized in the following propo-

sition. The idea in the proof essentially follows that in Cai et al. (2019). We provide it here

for completeness.

Proposition 4. Consider a class of decision rules ���(�) = {I(CLfdri < �) : 1  i  m} for

simultaneous testing of hypotheses {Hi : i 2 Nd(t)} in the neighborhood of t. Denote QOR(�)

the marginal FDR of ���(�). If ↵ < QOR(1), then the oracle threshold �OR := sup{� : QOR(�) 

↵} exists and is unique. Define the oracle rule ���OR = {I(CLfdri  �OR) : 1  i  m}. Then

���OR is optimal for simultaneous testing in the sense that

mFDR (���OR)  ↵, ETP (ddd⇤)  ETP (���OR) for all ddd⇤ such that mFDR(ddd⇤)  ↵.

Proof. The proof has two parts. In (a), we establish two properties of the testing rule that

thresholds the Clfdr at an arbitrary �, {I(Clfdri < �) : 1  i  m}. We show that it produces

mFDR < � for all � and that its mFDR is monotonic in t. In (b) we show that when the

threshold is �OR, the testing rule, �OR, exactly attains the mFDR level and is optimal amongst

all valid testing procedures controls mFDR at level ↵.

Part(a). For the testing rule {I(Clfdri < �) : 1  i  m}, let QOR(�) = ↵� . We first show

12



that ↵� < �. Since Clfdri = P (✓i = 0|Xi = xi), then

E
(

mX

i

(1� ✓i)�i

)
= EX

"(
mX

i

E✓|X(1� ✓i)�i

)#
= EX

 
mX

i

Clfdri�i

!
(C.8)

where notation E is the expected value taken over (X,✓), notation EX is the expectation

taken over the distribution of (X), and E✓|X is the expectation taken over ✓, holding (X)

fixed. We use (C.8) in the definition of QOR(�) to get

EX

(
mX

i=1

(Clfdri � ↵�)I(Clfdri  �)

)
= 0. (C.9)

The equality above implies that ↵� < �. To see this, consider that all potentially non–zero

terms arise when Clfdri  �, and when this is the case, either (i) ↵  Clfdri < �, (ii)

Clfdri  ↵ < �, or (iii) Clfdri < �  ↵. Notice (i) produces zero or positive terms on the LHS

of (C.9), (ii) produces zero or negative terms, and (iii) produces negative terms. If ↵� � �,

then only (iii) is possible, which contradicts the RHS. Thus, the testing rule is valid.

Next, we show that QOR(�) is nondecreasing in �. That is, letting Q(�j) = ↵j , if �1 < �2,

then ↵�1  ↵�2 . We argue by contradiction. Suppose that �1 < �2 but ↵1 > ↵2. First, it

cannot be that I(Clfdri < �2) = 0 for all i, because that implies ↵1 = ↵2 (both equal 0). Next,

since �1 < �2,

(Clfdri � ↵2)I(Clfdri < �2) = (Clfdri � ↵2)I(Clfdri < �1) + (Clfdri � ↵2)I(�1  Clfdri < �2)

and rewrite (Clfdri�↵2)I(Clfdri < �1) = (Clfdri�↵1)I(Clfdri < �1)+(↵1�↵2)I(Clfdri < �1).

If ↵2 < ↵1, then

(Clfdri � ↵2)I(Clfdri < �2) �(Clfdri � ↵1)I(Clfdri < �1) + (↵1 � ↵2)I(Clfdri < �1) (C.10)

+ (Clfdri � ↵1)I(�1  Clfdri < �2).

It follows that

E
(

mX

i=1

(Clfdri � ↵2)I(Clfdri < �2)

)
> 0.
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To see this, consider the expectation of the sum over m tests for the three RHS terms of

(C.10), which we reference as (i), (ii), and (iii) respectively. First, (i) is zero because of (C.9).

Then for each Clfdri < �2, either (ii) is positive because ↵2 < ↵1, or (iii) is positive because

↵1 < �1.

However, (C.9) establishes that E {
Pm

i=1(Clfdri � ↵2)I(Clfdri < �2)} = 0, leading to a

contradiction. Hence, ↵1 < ↵2.

Part(b). The oracle threshold is defined as �OR = sup�{� 2 (0, 1) : QOR(�)  ↵}. First, let

↵̄ = QOR(1), which represents the largest mFDR level that the oracle testing procedure can

be. By part (a), QOR(�OR) is non–decreasing. Via the squeeze theorem, for all ↵ < ↵̄, this

implies that QOR(�OR) = ↵.

Next, consider the power of �OR = {I(Clfdri < �OR) : 1  i  m} compared to that of an

arbitrary decision rule d⇤ = (d1⇤, . . . , d
m
⇤ ) such that mFDR(d⇤)  ↵. Using the previous result

from part(a), it follows that

E
(

mX

i=1

(Clfdri � ↵)�iOR

)
= 0 and E

(
mX

i=1

(Clfdri � ↵)di⇤

)
 0.

Take the di↵erence of the two expressions to obtain

E
(

mX

i=1

(�iOR � di⇤)(Clfdri � ↵)

)
� 0. (C.11)

Next apply a transformation f(x) = (x� ↵)/(1� x) to each �iOR. Note that because f 0(x) =

(1�↵)/(1�x)2 > 0, f(x) is monotonically increasing. Then order is preserved: if Clfdri < �OR

then f(Clfdri) < f(�OR) and likewise for Clfdrii > �OR. This means we can rewrite �iOR =

I [{(Clfdri � ↵)/(1� Clfdri)} < �OR], where �OR = (�OR � ↵)/(1� �OR). It will be useful to

note that, from part (a), we have ↵ < �OR < 1, which implies that �OR > 0.

Then,

E
"

mX

i=1

(�iOR � di⇤) {(Clfdri � ↵)� �OR(1� Clfdri)}
#
 0. (C.12)

To see this, consider that if �iOR � di⇤ 6= 0, then either (i) �iOR > di⇤ or (ii) �iOR < di⇤. If (i),
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then �iOR = 1 and it follows that {(Clfdri � ↵)/(1� Clfdri)} < �OR. If (ii), then �iOR = 0 and

{(Clfdri � ↵)/(1� Clfdri)} � �OR. For both cases,

(�iOR � di⇤) {(Clfdri � ↵)� �OR(1� Clfdri)}  0.

Summing over all m terms and taking the expectation yields (C.12).

Combine (C.11) and (C.12) to obtain

0  E
(

mX

i=1

(�iOR � di⇤)(Clfdr
i
i � ↵)

)
 �ORE

(
mX

i=1

(�iOR � di⇤)(Clfdri � ↵)

)
.

Finally, since �OR > 0, it follows that E
�Pm

i=1(�
i
OR � di⇤)(Clfdri � ↵)

 
> 0. After distributing

the (�iOR � di⇤) term and separating the expectations for the sums of the two decision rules,

we apply the definition of ETP (�) = E
�Pm

i=1 �
i (Clfdri � ↵)

 
to conclude that ETP (�OR) �

ETP (d⇤).
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