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We consider compound estimation of normal means with auxiliary data
collected from related source domains. The empirical Bayes framework pro-
vides an elegant interface to pool information across different samples and
construct efficient shrinkage estimators. We propose a nonparametric integra-
tive Tweedie (NIT) approach to transferring structural knowledge encoded in
the auxiliary data from related source domains to assist the simultaneous es-
timation of multiple parameters in the target domain. Our transfer learning
algorithm uses convex optimization tools to directly estimate the gradient of
the log-density through an embedding in the reproducing kernel Hilbert space
(RKHS), which is induced by the Stein’s discrepancy metric. Most popular
structural constraints can be easily incorporated into our estimation frame-
work. We characterize the asymptotic Lp risk of NIT by first rigorously an-
alyzing its connections to the RKHS risk, and second establishing the rate at
which NIT converges to the oracle estimator. The improvements in the esti-
mation risk and the deteriorations in the learning rate are precisely tabulated
as the dimension of side information increases. The numerical performance
of NIT and its superiority over existing methods are illustrated through the
analysis of both simulated and real data.

1. Introduction. In a broad class of integrative inference problems such as meta analy-
sis, replicability analysis, multi-task learning and multi-view data analysis, an essential task
is to combine information from multiple sources to make valid and informative decisions.
Consider a compound estimation problem where YYY = (Yi : 1 ≤ i ≤ n) is a vector of sum-
mary statistics in the target domain obeying

(1) Yi = θi + εi, εi ∼N(0, σ2).

We assume that σ2 is known. The goal is to estimate a high-dimensional parameter θθθ =

E(YYY ) = {θi : 1≤ i≤ n}. Suppose we also collect K auxiliary sequences SSS(k) = {S(k)
i : 1≤

i ≤ n}, 1 ≤ k ≤K , from related source domains. Let SSSi = (S1
i , · · · , SKi )T denote the side

information associated with unit i and SSS = (SSS1, · · · ,SSSn)T the auxiliary data matrix. Assume
that SSSi follow some unspecified multivariate distribution FS .

Transfer learning for large-scale estimation aims to extract and transfer structural knowl-
edge encoded in auxiliary data SSS to assist the simultaneous estimation of multiple parameters
in the target domain. The new setup poses several new challenges in the data aggregation pro-
cess. First, conventional meta-analytical methods, which often involve estimating an overall
effect by constructing weighted estimators to combine data across several subpopulations,
would become problematic when the source and target distributions differ. A key principle in
our methodological development is that the inaccuracy of auxiliary information or mismatch
of the target and source distributions should not lead to negative learning. Second, existing
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meta-analytical methods, which construct weighted estimators for only one or a few param-
eters, can be highly inefficient in large-scale estimation problems. When thousands of pa-
rameters are estimated simultaneously, useful structural knowledge, which is often encoded
in auxiliary data sources, is highly informative but has been underexploited in conventional
analyses. Finally, most transfer learning theories have focused on classification algorithms.
We aim to develop a new theoretical framework to gain understandings of the benefits and
caveats of transfer learning for shrinkage estimation.

1.1. Compound decisions, structural knowledge and side information. Consider a com-
pound decision problem where we make simultaneous inference of n parameters {θi : 1 ≤
i≤ n} based on {Yi : 1≤ i≤ n} from n independent experiments. Let δδδ = (δi : 1≤ i≤ n) be
a decision rule. Classical ideas such as the compound decision theory [32], empirical Bayes
(EB) methods [33] and James-Stein shrinkage estimator [38], as well as the more recent mul-
tiple testing methodologies [13, 39], showed that the joint structure of all observations is
highly informative, and can be exploited to construct more efficient classification, estimation
and multiple testing procedures. For example, the submimimax rule in [32] showed that the
disparity in the proportions of positive and negative signals can be incorporated into inference
to reduce the mis-classification rate, and the adaptive z-value procedure in [39] showed that
the asymmetry in the shape of the alternative distribution can be utilized to construct more
powerful false discovery rate (FDR, [3]) procedures.

In light of auxiliary data, the inference units become unequal. This heterogeneity provides
new structural knowledge that can be further utilized to improve the efficiency of existing
methods. The idea is to first learn the finer structure of the high-dimensional object through
auxiliary data and then apply the new structural knowledge to the target domain. For example,
in genomics research, prior data and domain knowledge may be used to define prioritized
subset of genes. [34] proposed to up–weight the p-values in prioritized subsets where genes
are more likely to be associated with the disease. Structured multiple testing is an important
topic that has received much recent attention; see [26, 9, 27, 16, 31] for a partial list of
references. These works show that the power of existing FDR methods can be substantially
improved by utilizing auxiliary data to place differential weights or to set varied thresholds
on corresponding test statistics. Similar ideas have been adopted by a few recent works on
shrinkage estimation. For example, [41] and [1] propose to incorporate the side information
into inference by first creating groups and then constructing group-wise linear shrinkage or
soft-thresholding estimators.

1.2. Nonparametric integrative Tweedie. Tweedie’s formula is an elegant and celebrated
result that has received renewed interests recently [19, 7, 12, 23, 18, 35]. Under the non-
parametric empirical Bayes framework, the formula is particularly appealing for large-scale
estimation problems for it is simple to implement, removes the selection bias [12] and enjoys
frequentist’s optimality properties asymptotically [19, 7].

This article develops a nonparametric integrative Tweedie (NIT) method to extract and
incorporate useful structural knowledge from both primary and auxiliary data. NIT has sev-
eral merits under the transfer learning setup. First, NIT allows the target and source distri-
butions to differ, which effectively avoids negative learning. Second, NIT provides a gen-
eral framework for incorporating various types of structural information and can effectively
handle multivariate covariates. Finally, in contrast with the linear EB shrinkage estimators
[42, 40, 20, 46] that are only optimal under parametric Gaussian priors, NIT belongs to the
class of generalized empirical Bayes (GEB) estimators, which enjoy asymptotic and minimax
optimality properties for a wide class of models [45, 7].
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1.3. Main ideas of our approach. The EB implementation of Tweeide’s formula involves
two steps: first estimating the marginal distribution and then predicting the unknown us-
ing a plug-in rule. We describe some important developments in the literature. [45] showed
that a truncated GEB estimator, which is based on a Fourier infinite-order smoothing ker-
nel, asymptotically achieves both the Bayes and minimax risks. The GMLEB approach by
[19] implements Tweedie’s formula by estimating the unknown prior distribution via the
Kiefer-Wolfwitz estimator. GMLEB is approximately minimax and universally reduces the
estimation risk. [7] employed a nonparametric EB estimator via Gaussian kernels and showed
that the estimator achieves asymptotic optimality for both dense and sparse means. Empiri-
cally GMLEB outperforms the kernel method by [7]. However, GMLEB is computationally
intensive and may not be suitable for data–intensive applications. The connection between
compound estimation and convex optimization was pioneered by [23], who cast GMLEB
estimation as a convex program. The algorithm is fast and compares favorably to competing
methods. However, the nonparametric GEB approach to compound estimation with covari-
ates has not been pursued in the literature.

We show that the EB implementation of NIT essentially boils down to the estimation of
the log-gradient of the conditional distribution of Y given SSS. Through a carefully designed
reproducing kernel Hilbert space (RKHS) representation of Stein’s discrepancy, we recast
compound estimation as a convex optimization problem, where the optimal shrinkage fac-
tor is found by searching among all feasible score embeddings in the RKHS. The algorithm
is computationally fast and scalable, and enjoys superior performance empirically. The ker-
nelized optimization framework provides a rigorous and powerful mathematical interface
for theoretical analysis. By appealing to the RKHS theory and concentration theories of V-
statistics, we derive the approximate order of the kernel bandwidth, establish the asymptotic
optimality of the data-driven NIT procedure and explicitly characterize the impact of the
dimension of covariates on the rate of convergence.

1.4. Our contributions. (1). Methodological contributions. First, NIT provides an
assumption-lean framework for assimilating auxiliary data from multiple sources. Existing
works [21, 11, 24] require that the conditional mean function must be specified in the form
of m(SSSi) =E(θi|SSSi) =SSSTi βββ, where βββ are regression coefficients that are usually unknown.
[17] derive the minimax rates of convergence for a class of functions m(SSSi) but their work
is confined to linear shrinkage estimators. By contrast, NIT does not require the specifica-
tion of any functional relationship and its asymptotic optimality holds for a wider class of
prior distributions. Second, NIT is capable of incorporating various types of side informa-
tion and handling multivariate covariates. By contrast, [41, 1] only focus on the variance or
sparsity structure, and both methods can only handle univariate covariates. Third, NIT is fast
and scalable, produces stable estimates, and provides a flexible tool for incorporating various
structural constraints. Finally, NIT eliminates the needs for defining groups, which avoids
information loss in discretization as encountered in [41, 1].

(2). Theoretical contributions. First, we establish the rates at which NIT converges to the
oracle integrative Tweedie estimator; this explicit characterization of the improvements in es-
timation risk not only reveals how much benefits the transfer learning algorithm can provide,
but also justifies the claim that NIT avoids negative learning asymptotically. Second, our
theory precisely tabulates the deteriorations in the learning rates as the dimension of side in-
formation increases. This gives caveats on utilizing high-dimensional auxiliary data. Finally,
we develop new analytical tools to formalize the theoretical properties of the optimization
framework using kernelized Stein’s discrepancy (KSD). The KSD approach has been applied
in a host of recent statistical and machine learning problems [28, 10, 43, 29, 30, 2]. The suc-
cess of KSD based methods critically depends on the conjecture that a lower risk in RKHS
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norm would translate to a lower Lp risk. However, a general isometry theory between the
RKHS and Lp risks does not exist. Our work provides the first rigorous analysis that estab-
lishes this isometry (in the context of compound estimation); the probability tools therein can
be of independent interest for decision theorists.

1.5. Organization of the Paper. The article is organized as follows. In Section 2, we
discuss the empirical Bayes estimation framework, NIT estimator and computational algo-
rithms. Section 3 studies the theoretical properties of the NIT estimator. Sections 4 and 5
investigate the performance of NIT using simulated and real data respectively. We conclude
the article with a discussion of some open problems. Additional technical details and proofs
are provided in the Supplementary Material.

2. Methodology. Let δδδ(yyy,sss) = (δi : 1 ≤ i ≤ n) be an estimator of θθθ and L2
n(δδδ,θθθ) =

n−1
∑n

i=1(θi − δi)2 the loss function. Define the risk Rn(δδδ,θθθ) = EYYY ,SSS|θθθ
{
L2
n(δδδ,θθθ)

}
and the

Bayes risk Bn(δδδ) =
∫
Rn(δδδ,θθθ)dΠ(θθθ), where Π(θθθ) is an unspecified prior.

The transfer learning setup may be conceptualized via a hierarchical model. We assume
that the primary and auxiliary data are related through a latent vector ξξξ = (ξ1, · · · , ξn)T :

(2)
θi = gθ(ξi, ηy,i), 1≤ i≤ n,

s
(j)
i = gsj (ξi, η̃j,i), 1≤ j ≤K,

where gθ and gsj are unspecified functions, and ηy,i and η̃j,i are random perturbations that
are independent from ξξξ. This hierarchical model provides a general framework that can be
utilized to incorporate both continuous and discrete auxiliary data into inference.

This section first introduces an oracle rule that optimally borrows information from SSS,
then discusses a data-driven rule that emulates the oracle rule.

2.1. Learning via integrative Tweedie. Consider an oracle with access to the joint density
f(y|sss). We study the optimal rule that minimizes the Bayes risk. The integrative Tweedie’s
formula, given by the next proposition, generalizes Tweedie’s formula ([33, 12]) from the
classical setup to the transfer learning setup.

PROPOSITION 1 (Integrative Tweedie). Consider the hierarchical model (1) and (2). Let
f(y|sss) be the conditional density of Y given SSS. The optimal estimator that minimizes the
Bayes risk is δδδπ(yyy,sss) = {δπ(yi,sssi) : 1≤ i≤ n}, where

(3) δπ(y,sss) = y+ σ2∇y log f(y|sss).

Integrative Tweedie is simple and intuitive, nonetheless it provides a general and flexible
framework for transfer learning. First, existing works on shrinkage estimation with side in-
formation require that the form of the conditional mean function m(SSSi) = E(Yi|SSSi) must
be pre-specified [21, 11, 24]. By contrast, integrative Tweedie incorporates the side infor-
mation via a general function f(y|sss), which eliminates the need to pre-specify a fixed rela-
tionship between Y and SSS. Next, the effectiveness of existing transfer learning algorithms
critically depends on the similarity between the target and source distributions, and may
suffer from negative learning when the target and source distributions differ. By contrast, in-
tegrative Tweedie effectively avoids negative learning; the auxiliary data SSS are only utilized
through f(y|sss) to assist inference by providing the structural knowledge of Y .

To illustrate the key advantages of the new transfer learning machinery, we present two
toy examples, which respectively show that: (a) If the two distributions match perfectly, then
integrative Tweedie reduces to an intuitive data averaging strategy; (b) If the two distributions
differ, then integrative Tweedie is still effective in reducing the risk.
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EXAMPLE 1. Suppose (Yi, Si) are conditionally independent given (µi,y, µi,s). We begin
by considering a case where Si is an independent copy of Yi:

µi ∼N(µ0, τ
2), Yi = µi + εi, Si = µi + ε′i,

where εi ∼N(0, σ2), ε′i ∼N(0, σ2). Intuitively, the optimal Bayes estimator is to use Zi =
(Yi + Si)/2∼N(µi, σ

2/2) as the new data point:

(4) µ̂opi =
1
2σ

2µ0 + τ2Zi
1
2σ

2 + τ2
=
σ2µ0 + τ2(Yi + Si)

σ2 + 2τ2
.

For this bivariate normal model, the conditional distribution of Yi given Si is Yi|Si ∼
N
(
σ2µ0 + τ2Si/(τ

2 + σ2), σ2(2τ2 + σ2)/(τ2 + σ2)
)
. It follows that l′(Yi|Si) = σ−2(2τ2 +

σ2)−1(τ2Si + σ2µ0)− Yi(τ2 + σ2).We obtain δπi = (σ2 +2τ2)−1{σ2µ0 +τ2(Yi+Si)}, re-
covering the optimal estimator (4). It is important to note that if we slightly alter the model,
say perturbating Si by ηi: Si = µi + ηi + ε′i, or letting Si = f(µi) + ε′i, then averaging Y and
S via (4) may lead to negative learning. However, integrative Tweedie provides a robust data
combination approach that always leads to a reduction in estimation risk (Proposition 2).

EXAMPLE 2. Suppose that Si is a group indicator. The two groups (S = 1 and S = 2)
have equal sample sizes. The primary data obey Yi|Si = k ∼ (1− πk)N(0,1) + πkN(µi,1),
with π1 = 0.01, π2 = 0.4 and µi ∼N(2,1). Consider two oracle Bayes rules δπi (Yi, Si) and
δπi (Yi). Some calculations yield[

B(δπi (Yi))−B{δπi (Yi, Si)}
]
/B{δπi (Yi)}= 0.216,

which shows that incorporating Si can reduce the risk by as much as 21.6%. It is important
to note that the distributions of Yi and Si are very different (continuous vs. binary), making
it difficult for conventional machine learning algorithms to pool information across the target
and source domains. Integrative Tweedie is still highly effective in reducing estimation risk
by exploiting the grouping structure encoded in Si.

2.2. Nonparametric estimation via convex programming. This section develops a data-
driven procedure to emulate the oracle rule. Denote the collection of all data by X =
(xxx1, · · · ,xxxn)T , where for i= 1, . . . , n, we have x1i = yi and the summary statistics collected
from the kth source domain constitute xki = s

(k−1)
i for k = 2, . . . ,K + 1. Our goal is to

estimate the shrinkage factor

hhhf (XXX) =

{
∇u1

log f(u1|u2, . . . , uK+1)
∣∣
uuu=xxxi

: 1≤ i≤ n
}

= {∇yi log f(yi|sssi) : 1≤ i≤ n}.

Let Kλ(xxx,xxx′) be a kernel function that is integrally strictly positive definite; λ is a tuning
parameter. A detailed discussion on the construction of kernel K(·, ·) and choice of λ is
provided in Section 2.3. Consider the following two n× n matrices:

(KKKλ)ij = n−2Kλ(xxxi,xxxj), (∇KKKλ)ij = n−2∇x1j
Kλ(xxxi,xxxj) .

For a fixed λ, let ĥhhλ,n be the solution to the following quadratic program:

(5) arg min
hhh∈VVV n

hhhTKKKλhhh+ 2hhhT∇KKKλ111,

where VVV n is a convex subset of Rn. We give two remarks.

REMARK 1. Convex constraints such as linearity and monotonicity, detailed in Section
2.3, are fundamental to the compound decision problem [23]. The constraints imposed via
VVV n can improve the stability and efficiency of the shrinkage estimator.
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REMARK 2. The convex program (5) is motivated by the kernelized Stein’s discrepancy
(KSD; [28, 10, 2]), a useful tool in our theoretical analysis formally defined in Section 3.
Roughly speaking, the KSD measures how far a given hhh is from the true score hhhf . The KSD
is always non-negative, and is equal to 0 if and only if hhh = hhhf . Hence, solving the convex
program (5) is equivalent to finding a shrinkage estimator (assisted by side information) that
makes the estimation risk as small as possible.

Proposition 1 motivates us to consider the following class of nonparametric integrative
Tweedie (NIT) estimators{

δ̂δδ
IT
λ : λ ∈ (0,∞)

}
, where δ̂δδ

IT
λ = yyy+ σ2

y ĥhhλ,n.(6)

In Section 3, we show that as n→∞ there exist choices of λ such that ĥhhλ,n can estimate hhhf
with negligible errors. It follows that the resulting estimator (6) is asymptotically optimal

The NIT estimator (6) marks a clear departure from existing GMLEB methods [19, 23, 15],
which cannot be easily extended to handle multivariate auxiliary data. Moreover, NIT has
several additional advantages over existing nonparametric GEB methods in both theory and
computation. First, in comparison with the GMLEB method [19], the convex program (5) is
fast and scalable. Second, [7] proposed to estimate the score function by the ratio f̂ (1)/f̂ ,
where f̂ is a kernel density estimate and f̂ (1) is its derivative. By contrast, our direct opti-
mization approach avoids computing ratios and produces more stable and accurate estimates.
Third, our convex program can be fine-tuned by selecting a suitable λ. This leads to improved
numerical performance and enables a disciplined theoretical analysis compared to the pro-
posal in [23]. Finally, the criterion in (5) can be rigorously analyzed to establish new rates of
transfer learning (Sec. 3.1) that are unknown in the literature.

2.3. Computational details. This section provides the following details in computation:
(a) how to impose convex constraints; (b) how to construct kernel functions to handle multi-
variate and possibly correlated covariates; and (c) how to choose the bandwidth λ.

1. Structural constraints. We illustrate how to design appropriate constraints to enforce
unbiasedness and monotonicity conditions. The unbiasedness can be achieved by setting∑n

i=1 hi = 0, with corresponding linear constraints given by 111Thhh = 0. The monotonic-
ity constraints proposed in [23] are highly effective for improving the estimation accu-
racy. These constraints can be included as Mhhh � aaa. For ease of presentation, assume that
y1 ≤ y2 ≤ · · · ≤ yn. To impose the monotonicty constraints σ2hi−1−σ2hi ≤ yi−yi−1 for all
i, we chooseM as the following upper triangular matrixMij = σ2(I{i= j}−I{i= j−1}),
and let aaaT = (y2 − y1, y3 − y2, · · · , yn − yn−1).

2. Kernel functions. The kernel function needs to be carefully constructed to deal
with various complications in the multivariate setting, where the auxiliary sequences SSSk,
1≤ k ≤M , may be correlated and have different measurement units. We propose to use the

Mahalanobis distance ‖xxx− xxx′‖Σxxx
=
√

(xxx−xxx′)TΣ−1
xxx (xxx−xxx′) in the kernel function, where

Σxxx is the sample covariance matrix. The RBF kernel isKλ(xxx,xxx′) = exp{−0.5λ2‖xxx−xxx′‖2Σxxx
},

where λ is the bandwidth whose choice is discussed next. Compared to the Euclidean dis-
tance that treats each coordinate equally, Mahalanobis distance is more suitable for combin-
ing data collected from heterogeneous sources for it is unitless, scale-invariant and takes into
account the correlation in the data. When auxiliary data contain both continuous and categor-
ical variables, we propose to use the generalized Mahalanobis distance [25]. We illustrate the
methodology for mixed types of variables in the numerical studies in Section 4.1 (Setting 4),
but only pursue theory for the case where both YYY and SSS are continuous.
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3. Modified cross-validation (MCV). Implementing the NIT estimator requires selecting
the tuning parameters λ. Following [8], we propose to determine λ via modified cross val-
idation (MCV). Let ηi ∼N (0, σ2), 1≤ i≤ n be i.i.d. noise variables independent of yyy and
sss1, · · · ,sssK . Define Ui = yi + αηi and Vi = yi − ηi/α. Then, Ui and Vi are independent. The
MCV uses UUU = {U1, · · · ,Un} for constructing estimators δITλ (UUU,SSS), while using V1, · · · , Vn
for validation. Consider the validation loss

L̂n(λ,α) =
1

n

n∑
i=1

{
δ̂ITλ,i(UUU,SSS)− Vi

}2 − σ2(1 + 1/α2) .

For a small α, the data-driven bandwidth is chosen by minimizing L̂n(λ,α), i.e., λ̂ =

arg minλ∈Λ L̂n(λ,α) for any Λ ⊂ R+ and the proposed NIT estimator is {yi + σ2
yĥhhλ̂,n(i) :

1≤ i≤ n}. Proposition 3 in Section 3.6 shows that asymptotically the validation loss is close
to the true loss, justifying the aforementioned algorithm.

3. Theory. This section develops large-sample theory for the data-driven NIT estimator.
We assume that XXXi = (Yi, Si1, · · · , Sik)T , i = 1, · · · , n, are i.i.d. samples from a continu-
ous multivariate density f on RK+1. Denote X = (XXX1, · · · ,XXXn)T the n× (K + 1) matrix
of observations and XXX(k) be the kth column of X. Let f be a density function defined on
RK+1 and hf (xxx) = ∇1 log f(x1|xxx−1) the conditional score function corresponding to the
first coordinate, where xxx−1 = {xj : 2 ≤ j ≤K + 1}. It follows from the definition that this
conditional score is same as the log-gradient of the joint density for the first coordinate,
i.e., hf (xxx) =∇1 log f(xxx). Recall that we aim to estimate θθθ = E

{
XXX(1)

}
. The score function

hf (xxx), by Proposition 1, plays the key role in the oracle NIT estimator. We next show how
hf (xxx) can be well estimated by the solution to (5).

3.1. Kernelized Stein’s discrepancy. We first introduce the kernelized Stein’s discrep-
ancy. Consider the Gaussian kernel function Kλ : RK+1 × RK+1 → R with bandwidth λ.
Let P andQ denote two conditional univariate distributions (conditional on aK-dimensional
covariate) on RK+1. Denote p and q the respective conditional densities and hp and hq the
score functions. The kernelized Stein’s discripancy (KSD; [28, 10, 2]) between P and Q is
the kernel weighted distance between hp and hq:

Dλ(P,Q) = E
(uuu,vvv)

i.i.d.∼ P
{Kλ(uuu,vvv)× (hp(uuu)− hq(uuu))× (hp(vvv)− hq(vvv))} .

The KSD is closely connected to the maximum mean discrepancy (MMD, [14]). Minimizing
KSD is a popular technique in several satistical applications. It has been recently applied
to the development of new goodness-of-fit tests [28, 10, 43], bayesian inference procedures
[29, 30] and simultaneous estimation methods [2]. Compared to the MMD, the KSD is par-
ticularly suitable for empirical Bayes estimation because it can be directly constructed based
on the score functions, which by Proposition 1 yield the optimal shrinkage factors. It can be
shown that the KSD satisfies

Dλ(P,Q)≥ 0 and Dλ(P,Q) = 0 if and only if P =Q.

The direct evaluation of Dλ(P,Q) is difficult. Next we discuss an alternative represen-
tation of the KSD that can be easily evaluated empirically. Specifically, for any functional
h : RK+1→R, define the following quadratic functional κλ[h] over RK+1 ×RK+1:

κλ[h](uuu,vvv) =Kλ(uuu,vvv)h(uuu)h(vvv) +∇vvvKλ(uuu,vvv)h(uuu) +∇uuuKλ(uuu,vvv)h(vvv) +∇uuu,vvvKλ(uuu,vvv) .(7)

The alternative representation of the KSD, given in [28, 10], uses the quadratic function in
(7) and only involves the score function of q:

(8) Dλ(P,Q) = E
(uuu,vvv)

i.i.d.∼ P
{κλ[hq](uuu,vvv)}.
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Now we turn to the compound estimation problem and discuss its connection to the KSD.
Proposition 1 shows that, when f is known, the optimal estimator is constructed based on
hhhf (XXX) = {hf (xxx1), . . . ,hf (xxxn)}T , the conditional score function evaluated at the n observed
data points. Define

Ŝλ,n(hhh) =hhhTKKKλhhh+ 2hhhT∇KKKλ111 + 111T∇2KKKλ111,(9)

where (∇2KKKλ)ij = n−2∇x1j
∇x1i

Kλ(xxxi,xxxj), KKKλ is the n× n Gaussian kernel matrix with
the bandwith λ and ∇KKKλ is defined in Section 2.2. It is easy to see that the convex
program (5) is equivalent to minimizing Ŝλ,n(hhh) over hhh1. Now, note that when hhh equals
hhhq = {hq(xxx1), . . . ,hq(xxxn)}, (9) is just the empirical version of the KSD defined in (8):

Ŝλ,n(hhhq) =Dλ(F̂n,Q) = E
(uuu,vvv)

i.i.d.∼ F̂n

{κλ[hq](uuu,vvv)}=
1

n2

n∑
i,j=1

κλ[hq](xxxi,xxxj) ,

where F̂n is the empirical distribution function.
We are now ready to explain the heuristic idea behind the optimization criterion (5).

As n → ∞, F̂n → F and one can show that Ŝλ,n(hhhq) → Sλ(hq) := Dλ(F,Q). More-
over, Dλ(F,Q) = 0 iff F = Q. Thus, if we could have minimized Sλ(hq) over the class
H = {hq =∇1 log q(xxx) : q is any density on RK+1}2, then the minimum would be achieved
at the true score function hf and the minimum value would be 0. However, Sλ(hq) involves
the unknown true distribution F , which makes such a direct minimization impossible. Alter-
natively, we minimize the corresponding sample based criterion Ŝλ,n(hhhq) in (9) (or equiva-
lently, (5)). In large-sample situations, we expect the sampling fluctuations to be small; hence,
minimizing Ŝλ,n will lead to score function estimates very close to the true score functions.
The convergence rates of the estimates are established next.

3.2. Score estimation under the Lp loss. The next two subsections formulate a rigorous
theoretical framework, in the context of compound estimation, to derive the convergence rates
of the proposed estimator.

The criterion (5) involves minimizing the V-statistic Ŝλ,n(hhh). Using standard asymptotics
results for V-statistics [37], it follows that for any density q, Ŝλ,n(hhhq)→Sλ(hq) in probability
as n→∞. Also, it follows that ĥhhλ,n, the solution to (5), satisfies:

n−2
∑
i,j

Kλ(xxxi,xxxj)
{
ĥhhλ,n(i)− hf (xxxi)

} {
ĥhhλ,n(j)− hf (xxxj)

}
=OP (n−1)(10)

as n→∞ , where ĥhhλ,n(i) = ĥhhλ,n(xxxi) for i= 1, . . . , n.
While (10) shows that in the RKHS norm the estimates are asymptotically close to the

true score functions, for most practical purposes we need to establish the convergence under
the `p norm. For p > 0, define `p(ĥhhλ,n,hf ) = n−1

∑n
i=1 |ĥhhλ,n(xixixi) − hf (xxxi)|p. The case of

p= 2 corresponds to Fisher’s divergence. Denote the RKHS norm on the left side of (10) by
dλ(ĥhhλ,n,hf ). The essential difficulty in the analysis is that the isometry between the RKHS
metric and `p metric may not exist. Concretely, for any λ > 0, we can show that dλ ≤C1 `2,
where C1 is a constant. However, the inequality in the other direction does not always hold.

1This can be easily seen because the extra term 111T∇2KKKλ111 does not involve hhh.
2For implementational ease, we relax the optimization space from the set of all conditional score functionsH

to the set all of all real functionals on RK+1. Due to the presence of structural constraints discussed in Section
2.1, this relaxation has little impact on the numerical performance of the NIT estimator. Simulations in Section 4
show that the solutions to (5) produce efficient estimates.
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We aim to show that `2 ≤C2 dλ for some constant C2; this would produce the desired bound
on the Lp risk. Next we provide an overview of the main ideas and key contributions of the
theoretical analyses in later subsections.

Fig 1: Schematic illustrating the relation between the RKHS and `1 risks of ĥhhλ,n. The (ap-
proximate) isometry can be still established. However, the error rate is increased from n−1 to
r−1
n due to inversion.

In Sections 3.3 and 3.5, we show that as n→∞ then `2(ĥhhλ,n,hf )≤ cλ,n dλ(ĥhhλ,n,hf ){1 +
oP (1)}, for some cλ,n that depends on λ and n only. This result, coupled with the conver-
gence in the RKHS norm (10), produces a tolerance bound on the Lp risk of ĥhhλ,n, which
is subsequently minimized over the choice of λ (Theorem 1 in Section 3.3). However, as a
result of inverting, the n−1 error rate in (10) is increased to r−1

n ≈ n−1/(K+2) for the `p risk
(in Theorem 1, we let p= 1). Figure 2 provides a schematic description of the phenomenon;
further explanations regarding this error rate are provided after Theorem 1.

We point out that existing KSD minimization approaches, including the proposed NIT
procedure, involve first mapping the observed data into RKHS and subsequently estimating
unknown quantities under the RKHS norm. A tacit assumption for developing theoretical
guarantees on the lp risk is that the lower RKHS loss would also translate to lower `p loss;
see, for example, Assumption 3 of Banerjee et al. [2] and Section 5.1 of Liu, Lee and Jordan
[28]. Heuristically, if Kλ(uuu,vvv) = cλI{uuu = vvv}, with cλ →∞ as n→∞, then (10) would
imply `2(ĥhhλ,n,hf )→ 0. By rigorously characterizing the asymptotic quasi-geodesic between
the two topologies, it can be shown that there exists such choices of λ. We provide a complete
analysis of the phenomenon that our score function estimates in the RKHS transformed space
has controlled `p risk for the compound estimation problem. This analysis, which is new
in the literature, also yields the rates of convergence for the `p error of the proposed NIT
estimator in the presence of covariates.

3.3. Convergence rates for sub-exponential densities. To facilitate a simpler proof, in
this section we assume that the true (K + 1)-dimensional joint density f as well as its score
function hf are Lipschitz continuous. We first provide results for sub-exponential densities,
which encompass the popular cases with Gaussian and exponential priors; the convergence
rates for heavier-tail priors are discussed in Section 3.5.

Assumption 1. The (K + 1) dimensional joint density f is sub-exponential.

Our main result is concerned with the `1 risk of the solution from (5). The following
theorem shows that the mean absolute deviation of the solution from the true score function
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is asymptotically negligible as n→∞. In the theorem we adopt the notation an � bn for two
sequences an and bn, which means that c1an ≤ bn ≤ c2bn for all large n and some constants
c2 ≥ c1 > 0.

THEOREM 1. Under assumption 1, as n→∞ with λ� n−1/(K+2),

rn ·
(

1

n

n∑
i=1

|ĥhhλ,n(i)− hf (xxxi)|
)
→ 0 in L1,(11)

where, rn = n1/(K+2)(log(n))−(2K+5).

REMARK 3. It follows immediately from Theorem 1 that the deviations between our
proposed estimate and the oracle estimator in (3) obeys:

rn

(
1

n

n∑
i=1

∣∣∣δ̂δδITλ (i)− δπi (yi|sssi)
∣∣∣)→ 0 in L1 as n→∞.(12)

Under the classical setting with no auxiliary data (K = 0), we achieve the traditional√
n−rate as established in Jiang and Zhang [19]. In this context, the rates are sharp.

We can see that, barring the poly-log terms, the convergence rate rn = n1/(K+2) decreases
as K increases. We provide further discussions on this attribute, as well as its implications
for transfer learning, in Section 3.4.

Next we sketch the outline of and main ideas behind the proof of Theorem 1; detailed
arguments are provided in the supplement. Consider

∆λ,n := E{dλ(hhhλ,n,hf )}= EXXXn

[
Kλ(xxx1,xxxn)

{
ĥhhλ,n(1)− hf (xxx1)

} {
ĥhhλ,n(n)− hf (xxxn)

}]
,

where the expectation is taken overXXXn = {xxx1, . . . ,xxxn} andxxxi are i.i.d. samples from f . From
(10) it follows that ∆λ,n = O(n−1). For λ→ 0, Kλ(xxx1,xxxn) is negligible only when ||xxx1 −
xxxn||2 is small. Thus for studying the asymptotic behavior of ∆λ,n, we shall restrict ourselves
on the event where ||xxx1 − xxxn||2 is small. Conditional on this event, we show that ∆λ,n can
be well approximated by κλ,n∆̄λ,n−1, where ∆̄λ,n−1 = EXXXn−1

{(ĥhhλ,n(1)− hf (xxx1))2f(xxx1)}
and the expectation is taken over XXXn−1 = {xxx1, . . . ,xxxn−1}. To heuristically understand the
genesis of ∆̄λ,n−1, substitute xxx1 + εεε in place of xxxn in the expression:

∆λ,n =

∫
Kλ(xxx1,xxxn)(ĥhhλ,n(1)− hf (xxx1))

(
ĥhhλ,n(n)− hf (xxxn)

)
f(xxx1) . . . f(xxxn)dxxx1 . . . dxxxn

and let |εεε| → 0. As λ→ 0, the contributions from the kernel weight Kλ can be separated out
of the expression and subsequently accounted by constants κλ,n. Meanwhile the remaining
terms produce ∆̄λ,n−1. The rate at which |εεε| → 0 needs to be appropriately tuned with λ
to get the optimal rate of convergence; a rigorous probability argument is provided in the
supplement. We shall see that the intermediate quantity ∆̄λ,n−1, which links the Lp and
RKHS norms, can be explicitly characterized. The rate of convergences will be established
by sandwiching ∆̄λ,n−1 with functionals involving L1 and L2 norms.

Finally we present a result investigating the performance of the NIT estimator under the
mean squared loss. Using sub-exponential tail bounds, the `2 loss of score functions can be
obtained by extending the results on `1 loss. The difference in the mean squared losses be-
tween the oracle and data-driven NIT estimators can be subsequently characterized. Lemma 2
below shows that this difference is asymptotically negligible.
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LEMMA 2. For any unknown prior π satisfying assumption 1 and λ� n−1/(K+2),

L2
n(δ̂δδ

IT

λ ,θθθ)−L2
n(δδδπ,θθθ) = op(r

−1
n ) as n→∞.(13)

Combining (12) and (13), we have established the asymptotic optimality of the data-driven
NIT procedure by showing that it achieves the risk performance of the oracle rule asymptot-
ically when n→∞; this theory is corroborated by the numerical studies in Section 4.

3.4. Benefits and caveats in exploiting auxiliary data. The amount of efficiency gain of
the data-driven NIT estimator depends on two factors: (a) the usefulness of the side informa-
tion and (b) the precision of the approximation to the oracle. Intuitively when the dimension
of the side information increases, the former increases whereas the latter deteriorates.

Consider the Tweedie estimator yi +σ2∇ log f1(yi) that only uses the marginal density f1

of Y and no auxiliary information. The Fisher information based on the marginal f1 and the
conditional density f(y|sss) are

IY =

∫ {
f ′1(y)

f1(y)

}2

f1(y)dy and IY |SSS =

∫ {
∇yf(y|sss)
f(y|sss)

}2

f(y,sss)dy dsss .

The following proposition, which follows from Brown [6] (for completeness a proof is pro-
vided in the supplement), shows that, under the oracle setting, utilizing side information is
always beneficial, and the efficiency gain becomes larger when more columns of auxiliary
data are incorporated into the estimator.

PROPOSITION 2. Consider hierarchical model (1)–(2). Let δδδπ(yyy) and δδδπ(yyy,SSS) respec-
tively denote the oracle estimator with only yyy and the oracle estimator with both yyy and SSS.
The efficiency gain due to usage of auxiliary information is

Bn {δδδπ(yyy)} −Bn {δδδπ(yyy,SSS)}= σ4
y

(
I(Y |SSS) − IY

)
≥ 0 .

The above equality is attained if and only if the primary variable is independent of all auxil-
iary variables.

In Theorem 1 and Lemma 2, the rate of convergence rn decreases as K increases. In
light of Proposition 2, this means that although theoretically we never lose by adding more
columns of auxiliary data (even if they are non-informative), there is still a tradeoff under
our estimation framework. The increase of K leads to a widened gap between the oracle and
data-driven rules, which may offset the benefits of incorporating more side information. The
following numerical example illustrates two aspects of the phenomenon.

Consider the hierarchical model (1)–(2). We draw the latent vector ξξξ from a two-point
mixture model, with equal probabilities on two atoms 0 and 2, i.e. ξi ∼ 0.5δ{0} + 0.5δ{2}.
The mean vectors are simulated as θi = ξi + ηy,i and µk,i = ξi + ηk,i, 1 ≤ k ≤ K with

ηy,i, ηk,i
i.i.d.∼ N (0,1). Finally we generate Yi ∼N (θi,1) and Sk,i ∼N (µk,i,1), 1≤ k ≤K .

We vary K from 1 to 12 and compare the oracle and data-driven NIT procedures in Figure
2. We can see that the increase of K has two effects: (a) the MSE of the oracle NIT proce-
dure decreases steadily, while (b) the gap between the oracle and data-driven NIT procedures
increases quickly. The combined effect initially leads to a rapid decrease in the MSE of the
data-driven NIT procedure, but the decline slackens as K ≥ 5.
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Fig 2: Mean squared error of our proposed method (in magenta) is plotted along with the
oracle risk (in sky blue) as the number of auxiliary variable (K) increases. The MSE of
the oracle procedure always decreases but the MSE of the data-driven NIT procedure stops
decreasing as K ≥ 9.

3.5. Convergence rates for heavy-tail densities. We extend the results in Section 3.3
to a wider class of prior distributions. To rule out cases where ||hf ||2 is negligible (such as
uniform prior), we consider the following mild assumption on the prior that rules out densities
with tail behaviors heavier than Cauchy.

Assumption 2: The class of priors π(θ) satisfy: θ2π(θ) is bounded for all θ.

The next theorem shows that, for suitably chosen bandwidth, the data-driven NIT estimator is
asymptotically close to the oracle estimator and the difference in their losses also converges
to 0 under any prior satisfying Assumption 2. The rate of convergence is slower than that of
Theorem 1, which is mainly due to the larger terms needed to bound heavier tails. Similar to
Theorem 1, the rate decreases with the increase of K .

THEOREM 3. Under Assumption 2, with λ� n−1/(K+2) and rn = n1/(3(K+2)), we have

rn ·
(

1

n

n∑
i=1

|ĥhhλ,n(i)− hf (xxxi)|
)
→ 0 in L1 as n→∞.

Additionally, we have L2
n(δ̂δδ

IT

λ ,θθθ)−L2
n(δδδπ,θθθ) = op(r

−1
n ) as n→∞.

3.6. Consistency of the MCV criterion. In Sections 3.3 and 3.5, we have established
asymptotic risk proporties of our proposed method as bandwidth λ→ 0. For finite sample
sizes, it is important to select the “best” bandwidth based on a data-driven criterion as pro-
vided in Section 2.3. The following proposition establishes the consistency of the validation
loss to the true loss, justifying the effectiveness of the bandwidth selection rule.
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PROPOSITION 3. For any fixed λ > 0 and n, we have

lim
α→0

E
{
L̂n(λ,α)−L2

n(δ̂δδ
IT

λ ,θθθ)
}

= 0 .

provided that there is a unique solution to (5) for α= 0.

4. Simulation. We consider three different settings where the structural information is
encoded in (a) one given auxiliary sequence that shares structural information with the pri-
mary sequence through a common latent vector (Section 4.1); (b) one auxiliary sequence
carefully constructed within the same data to capture the sparsity structure of the primary se-
quence (Section 4.2); (c) multiple auxiliary sequences that share a common structure with the
primary sequence (Section 4.3). We conduct simulations to compare the following methods:

• James-Stein estimator (JS).
• The empirical Bayes Tweedie (EBT) estimator implemented using kernel smoothing as

described in [7].
• Non-parametric maximum likelihood estimator (NPMLE), which implements Tweedie’s

formula using the convex optimization approach [23]. The method is implemented by the
R-package “REBayes” in [22].

• Empirical Bayes with cross-fitting (EBCF) by [17].
• The oracle NIT procedure (3) with known f(y|sss) (NIT.OR).
• The data-driven NIT procedure (6) by solving the convex program (NIT.DD).

The last three methods, which utilize auxiliary data, are expected to outperform the first three
methods when the side information is informative. The MSE of OR is provided as the optimal
benchmark for assessing the efficiency of various methods.

In the implementation of NIT.DD, we utilize the generalized Mahalanobis distance, dis-
cussed in Section 2.3, to compute the RBF kernel with bandwidth λ. A data-driven choice
of the tuning parameter λ is obtained by first solving optimization problems 5 over a grid of
λ values and then computing the corresponding modified cross-validation (MCV) loss. We
choose the λ with minimum MCV loss as the data-driven bandwidth.

4.1. Simulation 1: integrative estimation with one auxiliary sequence. Let ξξξ = (ξi : 1≤
i≤ n) be a latent vector obeying a two-point normal mixture:

ξi ∼ 0.5N (0,1) + 0.5N (1,1).

The primary data YYY = (Yi : 1 ≤ i ≤ n) in the target domain are simulated according to the
following hierarchical model:

θi ∼N (ξi, σ
2), Yi ∼N (θi,1).

By contrast, the auxiliary data SSS = (Si : 1≤ i≤ n) obeys

ζi ∼N (ξi, σ
2), Si ∼N (ζi, σ

2
s).

The above data generating mechanism is a special case of the hierarchical model (2). Both the
primary parameter θi and auxiliary parameter ζi are related to a common latent variable ξi,
with σ controlling the amount of common information shared by θi and ζi. We further use σs
to reflect the noise level when collecting data in the source domain. The auxiliary sequence
SSS becomes more useful when both σ and σs decrease. We consider the following settings to
investigate the impact of σ, σs and sample size n on the performance of different methods.

Setting 1: we fix n= 1000 and σ ≡ 0.1, then vary σs from 0.1 to 1.
Setting 2: we fix n= 1000 and σs ≡ 1, then vary σ from 0.1 to 1.
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Setting 3: we fix σs ≡ 0.5 and σ ≡ 0.5, then vary n from 100 to 1000.

Finally we consider a setup where the auxiliary sequence is a binary vector. In the im-
plementation of NIT.DD for categorical variables, we use indicator function to compute the
pairwise distance between categorical variables. Precisely, assume that si and sj are two
categorical variables, then the distance d(si, sj) = 1(si = sj).

Setting 4: Let ξξξ = (ξi : 1 ≤ i ≤ n) be a latent vector obeying a Bernoulli distribution
ξi ∼ Bernoulli(p). The primary sequence in the target domain is generated according to a
hierarchical model: θi ∼N (2ξi,0.25), yi ∼N (θi,1). The auxiliary vector is a noisy ver-
sion of the latent vector: si ∼ (1−ξi)Bernoulli(0.05)+ξiBernoulli(0.9). We fix n= 1000
and vary p from 0.05 to 0.5.

We apply different methods to data simulated according to the above models and compute
the MSEs using 100 replications. The simulation results for Settings 1-4 are displayed in
Figure 3. We summarize some important patterns of the plots and provide interpretations.

(a). The integrative methods (NIT.DD, EBCF) outperform univariate methods (JS, NPMLE,
EBT) that do not utilize side information in most settings. NIT.DD uniformly dominates
EBCF. The efficiency gain is substantial in many settings.

(b). Settings 1-2 shows that the efficiency gain of the integrative methods decreases when σ
and σs increase (e.g. the auxiliary data become less informative or noisier).

(c). Setting 3 shows that the sample size has big impacts on integrative empirical Bayes esti-
mation. A large sample size is essential for effectively incorporating the side information.
The EBCF may underperform univariate methods when n is small.

(d). The gap between NIT.OR and NIT.DD narrows when n increases.
(e). Setting 4 shows that the side information can be highly informative even when the types

of primary and auxiliary data do not match.

4.2. Simulation 2: Integrative estimation in two-sample inference of sparse means. This
section considers compound estimation in two-sample inference. Let X1i and X2i be two
Gaussian random variables. Denote µ1i = E(X1i) and µ2i = E(X2i), 1≤ i≤ n. Suppose we
are interested in estimating the differences θθθ = {µ1i − µ2i : 1≤ i≤ n}. The primary statistic
is given by YYY = {X1i − X2i : 1 ≤ i ≤ n}. However, it is argued in [9] that the primary
statisticYYY is not a sufficient statistic. Consider the case where bothµµµ1 andµµµ2 are individually
sparse. Then an important fact is that the union support U = {i : µ1i 6= 0 or µ2i 6= 0} is also
sparse. The intuition is that the sparsity structure of θθθ is captured by an auxiliary parameter
ηηη = {µ1i + µ2i : 1≤ i≤ n}. Our idea is to construct an auxiliary sequence SSS = {X1i +X2i :
1≤ i≤ n} and incorporate SSS into inference to improve the efficiency3.

To illustrate the effectiveness of the integrative estimation strategy, we simulate data
according to the following two settings and obtain primary and auxiliary data as YYY =
{X1i −X2i : 1≤ i≤ n and SSS = {X1i +X2i : 1≤ i≤ n}.
Setting 1: X1i and X2i are generated from X1i ∼N (µ1i,1) and X2i ∼N (µ2i,1), where

µµµ1[1 : k] = 2.5, µµµ2[1 : k] = 1

µµµ1[k+ 1 : 2k] = 1, µµµ2[k+ 1 : 2k] = 1

µµµ1[2k+ 1 : n] = 0, µµµ2[2k+ 1 : n] = 0

The sparsity level of θθθ is controlled by k. We fix n= 1000 and vary k from 50 to 450 to
investigate the impact of sparsity level on the efficiency of different methods.

3It can be shown that {(X1i−X2i,X1i+X2i) : 1≤ i≤ n} is minimal sufficient and retains all information
about θθθ.
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(a) Setting 1 (b) Setting 2

(c) Setting 3 (d) Setting 4

Fig 3: Simulation results for one given auxiliary sequence.

Setting 2: X1i and X2i are generated from X1i ∼N (µ1i,1) and X2i ∼N (µ2i,1), where

µµµ1[1 : k] = 1, µµµ2[1 : k] = 1

µµµ1[k+ 1 : 500] = 2.5, µµµ2[k+ 1 : 500] = 1

µµµ1[501 : n] = 0, µµµ2[501 : n] = 0

The primary parameter θθθ becomes more sparse when k increases. We fix n = 1000 and
vary k from 50 to 450 to investigate the efficiency gain of NIT.

We apply different methods to simulated data and calculate the MSEs using 100 replica-
tions. The simulation results are displayed in Figure 4. The following can be observed.

(a). The side information provided by the auxiliary sequence can be highly informative
for reducing the estimation risk. Our proposed methods (NIT.DD, NIT.OR) have smaller
MSEs than competing methods (EBCF, JS, NPMLE, EBT). The efficiency gain over
univariate methods (JS, EBT, NPMLE) is more pronounced when signals become more
sparse.
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(a) Setting 1 (b) Setting 2

Fig 4: Two-sample inference of sparse means.

(b). EBCF is dominated by NIT, and can be inferior to univariate shrinkage methods.
(c). The class of linear estimators is inefficient under the sparse setting. For example, the

NPMLE method dominates the JS estimator, and the efficiency gain increases when the
signals become more sparse.

4.3. Simulation 3: integrative estimation with multiple auxiliary sequences. This section
considers a setup where auxiliary data are collected from multiple source domains. Denote
YYY the primary sequence and SSSj , 1 ≤ j ≤ 4, the auxiliary sequences. In our simulation, we
assume that the primary vector θθθY = E(YYY ) share some common information with auxiliary
vectors θθθjS = E(SSSj), 1≤ j ≤ 4 through a latent vector ηηη, which obeys a mixture model with
two point masses at 0 and 2 respectively:

ηi ∼ 0.5δ{0} + 0.5δ{2}, 1≤ i≤ n.
There can be various ways to incorporate auxiliary data from multiple sources. We con-

sider, in addition to NIT.DD that utilizes all sequences, an alternative strategy that involves
firstly constructing a new auxiliary sequence S̄SS = 1

4(SSS1 +SSS2 +SSS3 +SSS4) to reduce the dimen-
sion and secondly applying NIT.DD to the pair (YYY ,S̄SS); this strategy is denoted by NIT1.DD.
Intuitively, if all auxiliary sequences share identical side information, then data reduction via
S̄SS is lossless. However, if the auxiliary data are collected from heterogeneous sources with
different structures and measurement units, then NIT1.DD may distort the side information
and lead to substantial efficiency loss.

To illustrate the benefits and caveats of different data combination strategies, we first con-
sider the scenario where all sequences share a common structure via the same latent vector
(Settings 1-2). Then we turn to the scenario where the auxiliary sequences share informa-
tion with the primary data in distinct ways (Settings 3-4). In all simulations below we use
n= 1000 and 100 replications.

Setting 1: The primary and auxiliary data are generated from the following models:

(14) Yi = θYi + εYi , Sji = θji + εji ,

where θYi ∼N (ηi, σ
2), θji ∼N (ηi, σ

2), 1≤ j ≤ 4, εYi ∼N (0,1) and εji ∼N (0, σ2
s), 1≤

i≤ n. We fix σ = 0.5 and vary σs from 0.1 to 1.



NONPARAMETRIC INTEGRATIVE TWEEDIE 17

(a) Setting 1 (b) Setting 2

(c) Setting 3 (d) Setting 4

Fig 5: Integrative estimation with multiple auxiliary sequences.

Setting 2: the data are generated using the same models as in Setting 1 except that we fix
σs = 0.5 and vary σ from 0.1 to 1.

Setting 3: We generate YYY and SSSj using model (14). However, we now allow θθθj to have
different structures across j. Specifically, let

ηηη1[1 : 500] = ηηη[1 : 500], ηηη1[501 : n] = 0, ηηη2[1 : 500] = 0, ηηη2[501 : n] = ηηη[501 : n].

The following construction implies that only the first two sequences are informative in
inference:

θYi ∼N (η1
i , σ

2); θji ∼N (η1
i , σ

2), j = 1,2; θji ∼N (η2
i , σ

2), j = 3,4.

We fix σ = 0.5 and vary σs from 0.1 to 1.
Setting 4: the data are generated using the same models as in Setting 3 except that we fix
σs = 0.5 and vary σ from 0.1 to 1.

We apply different methods to simulated data and summarized the results in Figure 3. We
make the following remarks.
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(a). The univariate methods (JS, NPMLE, EBT) are dominated by the integrative methods
(NIT.DD, NIT.OR, EBCF, NIT1.DD). The efficiency gain is more pronounced when σ and
σs are small.

(b). EBCF is dominated by NIT.DD. Compared to the setting with one auxiliary sequence,
the gap between the performances of NIT.OR and NIT.DD has widened because of the
increased complexity of the estimation problem in higher dimensions.

(c). In Settings 1-2, NIT1.DD is more efficient than NIT.DD as there is no loss in data re-
duction and fewer sequences are utilized in estimation.

(d). In Settings 3-4, the average S̄SS does not provide an effective way to combine the infor-
mation in auxiliary data. Since the last two sequences are not useful, such a data reduction
step leads to substantial information loss. NIT1.DD still outperforms univariate methods
but is much worse than EBCF and NIT.DD.

The simulation results show that it is potentially beneficial to reduce the dimension of
auxiliary data. However, there can be significant information loss if the data reduction step
is carried out improperly. It would be of interest to develop principled methods for data
reduction for extracting structural information from a large number of auxiliary sequences.

5. Applications. This section compares NIT and its competitors on gene expression data
and monthly sales data.

5.1. Integrative Non-parametric estimation of Gene Expressions. We consider the data
set in [36] that measures gene expression levels from cells that are without interferon alpha
(INFA) protein and have been infected with varicella-zoster virus (VZV). VZV is known to
cause chickenpox and shingles in humans [44]. INFA helps in host defense against VZV
but is often regulated in the presence of virus. Thus, it is important to estimate the gene
expressions in infected cells without INFA. Let θθθ be the true unknown vector of mean gene
expression values that need to be estimated. Further details about the dataset is provided in
Section S.7.1 of the supplement.

The data had gene expression measurements from two independent experiments studying
VZV infected cells without INFA. We use one vector, denoted YYY , to construct the estimates
and the other, denoted ỸYY , for validation. To estimate θθθ, alongside the primary data YYY , we also
consider auxiliary information:SSSU which are corresponding gene expression values from un-
infected cells, and Figure 6 shows the heatmap of the primary, the auxiliary and the valida-
tion sequences. We implemented the following estimators (a) the modified James-Stein (JS)
following [42], (b) Non-parametric Tweedie estimator without auxiliary information, (c) Em-
pirical Bayes with cross-fitting (EBCF) by [17] and the Non-parametric Integated Tweedie
(NIT) with auxiliary infomation: (d) with SSSU only, (e) with SSSI only (f) using both auxiliary
sequences. The mean square prediction errors of the above estimates were computed with
respect to the validation vector ỸYY .

Table 1 reports the percentage gain acheived over the naive unshrunken estimator that uses
YYY to estimate θθθ. It shows that non-parametric shrinkage produces an additional 0.6% gain
over parametric JS and using auxiliary information via NIT yields a further 5.2% gain. In
particular, NIT method outperforms EBCF, which also leverage side information from both
SU and SI, by 1.7% gain. Figure 6B shows the differences between the Tweedie and NIT
estimates. The differences are more pronounced in the left tails where Tweedie estimator is
seen to overestimate the levels compared to NIT. The JS and NIT effective size estimates
disagree by more than 50% at 28 genes (which are listed in supplement fig S.1). These genes
impact 35 biological processes and 12 molecular functions in human cells (see supplement
fig S.1 bottom two panels); this implies that important inferential gains can be made by using
auxiliary information via our proposed NIT estimator.
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Fig 6: Panel A: Heatmaps of the gene expression datasets showing the four expression vectors
corresponding to the observed, validation and auxiliary sequences. Panel B: scatterplot of the
effect size estimates of gene expressions based on Tweedie and NIT (using both SU and SI).
Magnitude of the auxiliary variables used in the NIT estimate is reflected by different colors.

TABLE 1
% gain in prediction errors by different estimators over the naive unshrunken estimator of gene expressions of

INFA regulated infected cells.

Methods James-Stein Tweedie EBCF using SSSU & SSSI NIT using SSSU NIT using SSSI NIT using SSSU & SSSI

% Gain 3.5 4.1 7.6 6.9 7.5 9.3

MSE 2.014 2.001 1.927 1.930 1.951 1.895

5.2. Leveraging auxiliary information in predicting monthly sales. We consider the total
monthly sales of beers across n= 866 stores of a retail grocery chain. These stores are spread
across different states in the USA (see Figure S.2 in the Supplement). The data is extracted
from [5], which has been widely studied for inventory management and consumer preference
analyses; see also [4] and the references therein.

Let YYY t be the n dimensional vector denoting the monthly sales of beer across the n stores
in month t ∈ {1, . . . ,12}. For inventory planning, it is economically important to estimate
future demand. In this context, we consider estimating the monthly demand vector (across
stores) for month t using the previous month’s sales YYY t−1. We use the first six months t =
1, . . . ,6 for estimating store demand variabilities σ̂2

i , i = 1, . . . , n. For t = 7, . . . ,12, using
estimators based on month t’s sales, we calculate their demand prediction error for month
t+ 1 by using its monthly sale data for validation. Among the estimators, we introspect the
modified James-Stein (JS) estimator of Xie, Kou and Brown [42]:

θ̂θθ
t+1

i [JS] = ĴS
t

i +

[
1− n− 3∑

i σ̂
−2
i (Y t

i − ĴS
t

i)
2

]
+

(Y t
i − ĴS

t

i) where ĴS
t

i =

∑n
i=1 σ

−2
i Y t

i∑n
i=1 σ

−2
i

,

as well as the Tweedie (T) estimator θ̂θθ
t+1

i [T] = Y t
i + σ̂iĥi where ĥi are estimates of

∇1 log f(σ̂−1
i Y t

i ) based on the marginal density of standardized sales. We also consider the
sales of three other products: milk, deodorant and hotdog from these stores. They are not di-
rectly related to the sale of beers but they might contain possibly useful information regarding
consumer preferences to beers particularly as they share zip-code and other store specific re-
sponses. We use them as auxiliary sequences in our NIT methodology. Figure 7 shows the
distribution of beer sales (across stores) for different months and the pairwise distribution of
the sales of different products. Further details about the dataset is provided in Section S.7.2
of the Supplement.
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Fig 7: Distribution of monthly sales of beer across stores (on left) and the pairwise distribu-
tion of joint sales of different products in the month of July (in right).

In Table 2, we report the average % gain in predictive error by the James-Stein (JS),
Tweedie (T) and integrative Tweedie (IT) estimators (using different combinations of aux-
iliary sequences) over the naive estimator δ̂t+1,naive =YYY t for the demand prediction problem
at t = 7, . . . ,12. The detailed month-wise gains and the loss function are provided in the
supplement. Using auxiliary variables via our proposed NIT framework yields significant
additional gains over non-integrative methods. However, the improvement slackens as an in-
creasing number of auxiliary sequences are incorporated. It is to be noted that the demand
data set is highly complex and heterogeneous and n = 866 may not be adequately large
for conducting successful non-parametric estimation. Hence suitably anchored parametric JS
estimator produces better prediction than non-parmatric Tweedie. Also, as demonstrated in
Table S.2 of the Supplement, there are months where shrinkage estimation methods do not
yield positive gains. Nonetheless, the NIT estimator produces significant advantages over
competing methods. It produces on average 7.7% gain over unshrunken methods and attains
an additional 3.7% gain over non-parametric shrinkage methods.

TABLE 2
Average % gains over the naive unshrunken estimator for monthly beer sales prediction

JS Tweedie IT-Milk IT-Deodorant IT-Hotdog IT-M&D IT-M&H IT-D&H IT-M&D&H

5.7 4.0 6.0 7.1 6.8 6.1 6.6 7.5 7.7

6. Discussion. NIT, inspired by classical empirical Bayes ideas, provides a new frame-
work for transferring useful structural knowledge from related sources domains to assist the
estimation of a high-dimensional parameter in the target domain. The framework avoids neg-
ative learning because no distributional assumptions are imposed on auxiliary data SSS, which
are allowed to be categorical, numerical or of mixed type. The auxiliary data are only used to
provide structural knowledge of the high-dimensional parameter in the target domain.

Our theory tabulates the reductions in estimation errors and deteriorations in the learn-
ing rates as the dimension of SSS increases. This indicates that if we have a large number of
variables as potential choices for auxiliary data, it would be beneficial to first conduct data
reduction before applying the NIT estimator. The loss of information resulted from the data
reduction process can possibly be compensated by the increased precision in the optimiza-
tion process. However, our simulation results in Section 4.3 show that there can be significant
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information loss if the data reduction step is carried out improperly. Our findings suggest two
directions for future research: (a) the investigation of the tradeoff, as K increases, between
the achievable error limit of the oracle rule and the decreased convergence rate of the data-
driven rule, and (b) the development of principled structure-preserving dimension reduction
methods under the transfer learning framework for extracting useful structural information
from a large number of auxiliary sequences.
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In Sections S.1-S.6 of this supplement we present the proofs of all results stated in the main paper.

The proofs are presented in the order the results appear in the main paper. The equations and results

that only appear in the supplement but not in the main paper are prefixed by S. We also provide further

details regarding the real data examples Section S.7.

S.1 Proof of Proposition 1

The idea of the proof follows from Brown [1971]; we provide it here for compeleteness.

Noting that f(y,sss) =
∫
f(y,sss|θ)dhθ(θ) and f(y,sss|θ) = f(y|sss, θ)f(sss|θ), expand the partial

derivative of f(y,sss):

∇yf(y,sss) = σ−2
(∫

θf(y|sss, θ)f(sss|θ)dhθ(θ)− y
∫
f(y|sss, θ)f(sss|θ)dhθ(θ)

)
= σ−2

(∫
θf(y,sss|θ)dhθ(θ)− yf(y,sss)

)
Then, left-multiplying by σ2 and dividing by f(y,sss) on both sides, it follows that

σ2
∇yf(y,sss)

f(y,sss)
=

∫
θf(y,sss|θ)dhθ(θ)
f(y,sss|θ)

− y

Under square error loss, the posterior mean minimizes the Bayes risk. And so, the Bayes estimator is

given by

E(θ|y,sss) =

∫
θf(y,sss|θ)dhθ(θ)

f(y,sss)
= y + σ2

∇yf(y,sss)

f(y,sss)
,

where, the second equality follows from the above two displays.
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S.2 Proof of Theorem 1

First note that the expected value of the concerned `p distance

`p(ĥhhλ,n, hf ) = n−1
n∑
i=1

|ĥhhλ,n(i)− hf (xxxi)|p

is given by ∆
(p)
λ,n(f) = EXXX{`p(ĥhhλ,n, hf )} where, the expected value is over XXXn = (xxx1;xxx2; . . . ;xxxn)

where xxxis are i.i.d. from f . Thus,

∆
(p)
λ,n(f) = E |ĥhhλ,n(1)− hf (xxx1)|p = E|ĥhhλ[XXXn](xxx1)− hf (xxx1)|p .

For notational ease, we would often keep the dependence on f in ∆
(p)
λ,n(f) implicit. The proof involves

upper and lower bounding ∆
(2)
λ,n by the functionals involving ∆

(1)
λ,n. The upper bound is provided

below in (S.3). The lower bound follows from (S.5), whose proof is quite convoluted and is presented

separately in Lemma S.2.1.

As the marginal density of the θθθ is the convolution with a Gaussian distribution, it follows that

there exists some constant C ≥ 0 such that

|hf (xxx1)|/‖xxx1‖2 ≤ C for all large ||xxx1||2.

and |ĥhhλ[XXXn](xxx1)| = O(‖xxx1‖2). With out loss of generality we include such constraints on hhh in the

convex program to solve (5) and so, |ĥhhλ[XXXn](xxx1)− hf (xxx1)| is also bounded by O(‖xxx1‖2).

Using this property of the score estimates, we have the following bound for all xxx1 satisfying

{xxx1 : ‖xxx1‖2 ≤ 2γ log n}:

E
[(
ĥhhλ[XXXn](xxx1)− hf (xxx1)

)2
I {‖xxx1‖2 ≤ 2γ log n}

]
≤ 2γ log(n) ∆

(1)
λ,n. (S.1)

On the set {‖xxx1‖2 > 2γ log n}, again using the aforementioned property of score estimates from (5)

we note that

E
[(
ĥhhλ[XXXn](xxx1)− hf (xxx1)

)2
I {‖xxx1‖2 > 2γ log n}

]
. E

[
‖xxx1‖22I{‖xxx1‖2 > 2γ log n}

]
, (S.2)

where, for any two sequences an, bn, we use the notation an . bn to denote an/bn = O(1) as n→∞.

Now, as xxx1 satisfies assumption 1, the right hand side (S.2) is bounded by O(n−1). Combining

(S.1) and (S.2) we have the following upper bound on ∆
(2)
λ,n:

∆
(2)
λ,n . log(n) ∆

(1)
λ,n + n−1 . (S.3)
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For the lower bound on ∆
(2)
λ,n consider the following intermediate quantity which is related to the

KSD norm dλ on the score functions:

∆̄λ,n(f) = E
{(
ĥhhλ[XXXn](xxx1)− hf (xxx1)

)2
f(xxx1)

}
.

It can be shown that

∆
(1)
λ,n .

√
{log(n)}K+1 ∆̄λ,n + n−1 as n→∞. (S.4)

Proof of (S.4). Restrictingxxx1 on set {xxx1 : ‖xxx1‖2 ≤ 2γ log n} and using Cauchy-Schwarz inequal-

ity, we get

E
[(
ĥhhλ[XXXn](xxx1)− hf (xxx1)

)2
I {‖xxx1‖2 ≤ 2γ log n}

]
≤
[
CK,γ {log(n)}K+1∆̄λ,n(f)

] 1
2 .

On the tail {xxx1 : ‖xxx1‖2 > 2γ log n} using the same argument as (S.2), we have

E
[∣∣∣ĥhhλ[XXXn](xxx1)− hf (xxx1)

∣∣∣ I {‖xxx1‖2 > 2γ log n}
]

= O(n−1).

(S.4) follows by combining the above two displays.

The following result lower bounds ∆
(2)
λ,n using ∆̄λ,n.

Lemma S.2.1. For any λ > 0, we have

∆̄λ,n . λ−(K+1)Sλ[ĥhhλ,n+1] + λ2 log n+ λ(log n)K+3∆
(2)
λ,n . (S.5)

The proof of the above lemma is intricate and is presented at the end of this section.

Now, for the proof of theorem 1, we combine (S.3), (S.4) and (S.5). Then, using λ � n−
1

K+2 and

the fact that ∆
(1)
λ,n is bounded, we arrive at

∆
(1)
λ,n .

√
{log(n)}K+1

{
n
K+1
K+2Sλ[ĥhhλ,n+1] + n−

2
K+2 log(n) + n−

1
K+2 (log n)K+4 ∆

(1)
λ,n

}
. (S.6)

Proportion S.2.2, which is stated and proved at the end of this proof, provides the following upper

bound on Sλ[ĥhhλ,n+1]:

Sλ[ĥhhλ,n+1] ≤
E {hf (xxx1)}2 − E

{
ĥhhλ[XXXn+1](xxx1)

}2

n
(S.7)
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Using the similar argument as (S.3), the numerator in above can be further upper bounded by 2γ∆
(1)
λ,n+1+

O(n−1). Substituting this in (S.6), we arrive at an inequality only involving quantities ∆
(1)
λ,n and

∆
(1)
λ,n+1. Now, noting that λ � n−

1
K+2 and ∆

(1)
λ,n is bounded, it easily follows that ∆

(1)
λ,n → 0 as

n→∞.

Establishing the rate of convergence of ∆
(1)
λ,n needs further calculations. For that purpose consider

An = max
{

∆
(1)
λ,n, 2n−

1
K+2 (log n)2K+5

}
. For all large n, the following inequality can be derived

from (S.6) and (S.7):

An ≤ C (log n)K+1n−
1

2K+4

√
An+1, (S.8)

where C is a constant independent of n.

Applying (S.8) recursively m times we have:

An ≤
(
C(log n)K+1n−

1
2K+4

)1+···+ 1
2m

A
1

2m+1

n+m+1.

Note that An < 1 for all large n. This implies that for any m > 0,

An ≤
(
C(log n)K+1n−

1
2K+4

)1+···+ 1
2m

.

Finally, let m→∞, we proved that An ≤ C(log n)2K+2n−
1

K+2 , which implies

∆
(1)
λ,n . (log n)2K+2n−

1
K+2 .

This completes the proof of Theorem 1.

S.2.1 Proofs of results used in the proof of Theorem 1

Proposition S.2.2. Let Kλ(·, ·) be RBF kernel with bandwidth parameter λ ∈ Λ and Λ is a compact

set of R+ bounded from zero. Then we have

Sλ[ĥhhλ,n] ≤
E {hf (xxx1)}2 − E

{
ĥhhλ[XXXn](xxx1)

}2

n− 1
.

Proof of Proposition S.2.2. By the construction of the ĥhhλ,n, we have

Ŝλ[ĥhhλ,n] ≤ Ŝλ[hhhf ]. (S.9)
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Taking the expectation on the both sides of equation (S.9), we get

n2 − n
n2

Sλ[ĥhhλ,n] +
n

n2

(
E
{
ĥhhλ[XXXn](xxx1)

}2
+

1

λ

)
≤ n2 − n

n2
Sλ[hf ] +

n

n2

(
E {hf (xxx1)}2 +

1

λ

)
.

Notice that Sλ[hf ] = 0 and then the above inequality implies

Sλ[ĥhhλ,n] ≤
E {hf (xxx1)}2 − E

{
ĥhhλ[XXXn](xxx1)

}2

n− 1
,

which completes the proof.

Proof of Lemma S.2.1.

First we assume there are n + 1 i.i.d. samples, XXXn+1 = (xxx1;xxx2; . . . ;xxxn+1) where xxxis are i.i.d. from

f . Note that the definition of Sλ[ĥhhλ,n+1] is equivalent to the following definition:

Sλ[ĥhhλ,n+1] = E [Dλ(xxx1,xxxn+1)] ,

where the KSD is given by

Dλ(xxx1,xxxn+1) = Kλ(xxx1,xxxn+1)
(
ĥhhλ[XXXn+1](xxx1)− hf (xxx1)

)(
ĥhhλ[XXXn+1](xxxn+1)− hf (xxxn+1)

)
.

We consider the situation when xxxn+1 is in the ε-neighboor of xxx1. For a fixed ε > 0, denote

I
(1)
ε;λ := E

[
Dλ(xxx1,xxxn+1)I{‖xxxn+1 − xxx1‖ < ε}

]
.

When ε = λ log n, we have

I
(1)
ε;λ ≤ Sλ[ĥhhλ,n+1] +O

(
n−0.5 logn

)
. (S.10)

The proof of (S.10) is non-trivial. To avoid disrupting the flow of arguments here, its proof is not

presented immediately but is provided at the end of this subsection.

Denote the following intermediate quantity I(2)ε;λ which is close to ∆̄λ,n(f) as

I
(2)
ε;λ := E

[
Kλ(xxx1,xxxn+1)

(
ĥhhλ[XXXn+1](xxx1)− hf (xxx1)

)2
I{‖xxxn+1 − xxx1‖ < ε}

]
.

We use Cauchy Schwarz inequality and lipschitz continuity of score function to show I
(2)
ε;λ is bounded
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by a function of I(1)ε;λ as

I
(2)
ε;λ ≤ I

(1)
ε;λ +O(εK+3). (S.11)

The proof of (S.11) is quite involved and is presented afterwards. Finally, we establish the following

bound which along with (S.10) and (S.11) complete the proof of the lemma:

∆̄λ,n . λ−K−1I
(2)
ε;λ + λ2(log n)K+3 + λ∆

(2)
λ,n log n. (S.12)

Proof of (S.10). Note that the difference between Sλ[ĥhhλ,n+1] and I(1)ε;λ is

E
[
Dλ(xxx1,xxxn+1)I{‖xxxn+1 − xxx1‖ ≥ ε}

]
.

If we use the Gaussian kernal Kλ(xxx1,xxxn+1) = e−
1

2λ2
‖xxx1−xxxn+1‖2 and set ε = λ log n, we have

Kλ(xxx1,xxxn+1)I{‖xxxn+1 − xxx1‖ ≥ ε} is always bounded by n−0.5 logn, which implies the above dif-

ference is bounded by ∆
(2)
λ,n+1n

−0.5 logn. Note that ∆
(2)
λ,n+1 is bounded, (S.10) follows.

Proof of (S.11). Note that the score function hf is Lf -Lipschitz continuous. If we assume for

small ε, when ‖xxxn+1 − xxx1‖ < ε, we have ĥhhλ[XXXn+1](xxxn+1) is Ln,ε-Lipschitz continuous as∣∣∣ĥhhλ[XXXn+1](xxxn+1)− ĥhhλ[XXXn+1](xxx1)
∣∣∣ ≤ Ln,ε ε. (S.13)

where Ln,ε satisfies that EL2
n,ε is bounded. Then the difference between I(2)ε;λ and I(1)ε;λ is bounded by

E
[
ε (Lf + Ln,ε)Kλ(xxx1,xxxn+1)

∣∣∣ĥhhλ[XXXn+1](xxx1)− hf (xxx1)
∣∣∣ I{‖xxxn − xxx1‖ < ε}

]
Apply the Cauchy-Schwarz inequality and the square of above difference can be further bounded by

εE
[
(Lf + Ln,ε)

2I{‖xxxn − xxx1‖ < ε}
]
E
[
K2
λ(xxx1,xxxn+1)

∣∣∣ĥhhλ[XXXn+1](xxx1)− hf (xxx1)
∣∣∣2 I{‖xxxn − xxx1‖ < ε}

]
Note that E

[
(Lf + Ln,ε)

2I{‖xxxn − xxx1‖ < ε}
]

is bounded by

Cf
π(K+1)/2

Γ(K+1
2 + 1)

εK+1E(Lf + Ln,ε)
2,

where Γ(x) is the gamma function. Notice that K2
λ(xxx1,xxxn+1) ≤ Kλ(xxx1,xxxn+1) and then we have

I
(2)
ε;λ . I

(1)
ε;λ + ε

√
εK+1∆2

ε;λ.
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This completes the proof of (S.11).

Proof of (S.12). We introduce an intermediate quantity:

I
(3)
ε;λ = E

[
Kλ(xxx1,xxxn+1)

(
ĥhhλ[XXXn](xxx1)− hf (xxx1)

)2
I{‖xxxn+1 − xxx1‖ < ε}

]
.

Assume that when n is large and ‖xxxn+1 − xxx1‖ < ε, we have ĥhhλ[XXXn+1](xxxn+1) is Ln,ε-Lipschitz

continuous as: ∣∣∣ĥhhλ[XXXn+1](xxxn+1)− ĥhhλ[XXXn](xxx1)
∣∣∣ ≤ Ln,ε ε

Combined with (S.13), we get the difference between I(3)ε;λ and I(2)ε;λ is bounded by

4ε2 E
[
L2
n,εKλ(xxx1,xxxn+1)I{‖xxxn+1 − xxx1‖ < ε}

]
,

which implies that

I
(3)
ε;λ . I

(2)
ε;λ + εK+3. (S.14)

Next we introduce another intermediate quantity

I
(4)
ε;λ = E

∫
f(xxx1)Kλ(xxx1,xxxn+1)

(
ĥhhλ[XXXn](xxx1)− hf (xxx1)

)2
I{‖xxxn+1 − xxx1‖ < ε} dxxxn+1,

which is close to I(3)ε;λ . When ε = λ log n, we have the following term∫
Kλ(xxx1,xxxn+1)I{‖xxxn+1 − xxx1‖ < ε} dxxxn+1

is lower bounded by

λK+1

∫
e−

1
2
‖xxxn+1‖2I{‖xxxn+1‖ < log n} dxxxn+1,

which can be further lower bounded by c λK+1 for some constant c when n is large. This implies

λK+1 ∆̄λ,n(f) . I
(4)
ε;λ . (S.15)

Now it is enough to show I
(4)
ε;λ . I

(3)
ε;λ + λK+2∆

(2)
λ,n log n.

Assume that f is Lf -Lipschitz continuous. The difference between I(4)ε;λ and I(3)ε;λ is bounded by

Lf ε∆
(2)
λ,n

∫
[Kλ(xxx1,xxxn+1)I{‖xxxn+1 − xxx1‖ < ε}] dxxxn+1.

7



Notice that
∫

[Kλ(xxx1,xxxn+1)I{‖xxxn+1 − xxx1‖ < ε}] dxxxn+1 is bounded by C λK+1 for some constant

C. This implies that

I
(4)
ε;λ . ∆3

ε;λ + λK+2I
(3)
λ,n log n.

Combined with (S.14) and (S.15), the result (S.12) follows.

S.3 Proof of Lemma 2

We follow the notions in Section S.2. The convergence rate of ∆
(2)
λ,n is achieved by extending the

results of ∆
(1)
λ,n in Section S.2. Recall that (S.3) shows

∆
(2)
λ,n . log(n) ∆

(1)
λ,n + n−1 ,

and we have proved ∆
(1)
λ,n . (log n)2K+2n−

1
K+2 in Section S.2. Combining these two, we obtain the

result stated in this lemma.

S.4 Proof of Proposition 2

Proposition 4.5 in Johnstone [2011] shows that Bn(δδδπ(yyy)) = σ2 − σ4IY . Following the same argu-

ments, we have Bn(δδδπ(yyy,SSS)) = σ2 − σ4I(py|sss). Then it follows

Bn(δδδπ(yyy))−Bn(δδδπ(yyy,SSS)) = σ4(IY |SSS − IY )

Next, we prove that IY |SSS − IY is non-negative. By the definition of IY |SSS , we have the following

decomposition:

IY |SSS =

∫∫ (f(y)∇yf(sss|y) + f(sss|y)∇yf(y)

f(y,sss)

)2
f(y,sss) dy dsss.

Then we break the square and it follows

IY |SSS =

∫∫ (∇yf(sss|y)

f(sss|y)

)2
f(y,sss) dy dsss+

∫∫ (∇yf(y)

f(y)

)2
f(y) dy + 2

∫∫
∇yf(sss|y)∇yf(y) dy dsss.

Note that the second term of right hand side is always non-negative. Then we consider the last term

and exchange the integration and partial derivative, we get∫∫
∇yf(sss|y)∇yf(y) dy dsss =

∫
∇yf(y)∇y

(∫
f(sss|y)dsss

)
dy = 0

It follows that IY ≥ IY |SSS .
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S.5 Proof of Theorem 3

The proof of this theorem follows along the similar lines of the proof for Theorem 1. Denote α =

1/(3(K + 1)(K + 2)). In this case we entertain the possiblity that the joint density f can be a heavier

tailed density. We concentrate on set {‖xxx1‖2 ≤ nα} instead of the set {‖xxx1‖2 . log n} analyzed in

the proof of Theorem 1.

Noting that ĥhhλ[XXXn](xxx1) and hf (xxx1) are bothO (1) it follows that |ĥhhλ[XXXn](xxx1)−hf (xxx1)| = O (1).

Then applying the Cauchy-Schwarz inequality, we get

E
[(
ĥhhλ[XXXn](xxx1)− hf (xxx1)

)2
I {‖xxx1‖2 ≤ n

α}
]
.
{
n(K+1)α ∆̄λ,n

}1/2
. (S.16)

Next, we consider the situation when ||xxxi||2 is large. Using |ĥhhλ[XXXn](xxx1) − hf (xxx1)| = O (1) and

Assumption 2, it follows

E
[(
ĥhhλ[XXXn](xxx1)− hf (xxx1)

)2
I {‖xxx1‖2 > nα}

]
. n−α(K+1) . (S.17)

Combining (S.16) and (S.17) gives the bound on ∆
(2)
λ,n as

∆
(2)
λ,n .

{
n(K+1)α ∆̄λ,n

}1/2
+ n−α(K+1) . (S.18)

Now, recall (S.5) in Lemma S.2.1 upper bounds ∆̄λ,n by a function of ∆
(2)
λ,n. Using (S.5) and (S.18),

we get

∆
(2)
λ,n . n(K+1)α/2

{
λ−(K+1)Sλ[ĥhhλ,n+1] + λ2 log n+ λ(log n)K+3∆

(2)
λ,n

}1/2
+ n−α(K+1) .

(S.19)

Note that, ∆
(2)
λ,n is bounded and so, Proposition S.2.2 implies Sλ[ĥhhλ,n+1] is bounded by O(n−1).

Finally, let λ � Θ(n−
1

K+2 ) and substitute α = 1
3(K+1)(K+2) in (S.19) to obtain

∆
(2)
λ,n . n

− 1
3(K+2) ,

which completes the proof of Theorem 3.

9



S.6 Proof of Proposition 3

First note that

Kλ ((ui, si); (uj , sj)) /Kλ ((xi, si); (xj , sj)) = exp

{
− 1

2λ
(ui − uj)2 +

1

2λ
(xi − xj)2

}
= exp

{
− 1

2λ

[
α2(ηi − ηj)2 − 2α(ηi − ηj)(xi − xj)

]}
:= I1.

For any fixed n, we have xmax − xmin ≤ C1 and ηmax − ηmin ≤ C2 for some quantities C1 and C2.

Then the above is bounded by

I2 := exp
{
−2−1λ−1α(C2

2α− 2C1C2)
}
.

The above ratio for∇Kλ equals I1(ui − uj)/(xi − xj), which is bounded in magnitude by I2 (C3 + C2)/C3

where C3 = mini 6=j |xi − xj | and C3 > 0 as the distribution of Y in (1) is continuous.

Now consider the estimators

δ̂IT
λ,i(U, S) = ui + σ2(1 + α2)ĝi = yi + αηi + σ2(1 + α2)ĝi, and,

δ̂IT
λ,i(Y, S) = yi + σ2(1 + α2)ĥi ,

where, for an arbitrary fixed value of λ, ĝi and ĥi are solutions from (5) using (u, s) and (y, s) respec-

tively. Note that,

L̂n(λ, α) =
1

n

∑
i

(
δ̂IT
λ,i(U, S)− vi

)2
− σ2(1 + α−2).

Taking expectation and using the fact that V is conditionally independent of (U, S), we get,

E{L̂n(λ, α)} = E

[
1

n

∑
i

(
δ̂IT
λ,i(U, S)− θi

)2]
.

For any fixed n,

Di := δ̂IT
λ,i(U, S)− δ̂IT

λ,i(U, S) = αηi + σ2
[
(1 + α2)ĝi − ĥi

]
.

Now, if the optimization in (5) is strictly convex, then for any small α, there exists εα such that

maxi |ĝi − ĥi| < εα and εα ↓ 0 as α ↓ 0 and the result stated in this proposition follows.
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S.7 Further details on the Real Data Illustrations

S.7.1 Gene Expressions Estimation example

The data considered in this analysis was collected in Sen et al. [2018] via RNA sequencing. The set

of genes in the sequencing kit was same across all the experiments. The standard deviations of the

expressions values corresponding to the different genes were estimated from related gene expression

samples which contain replications under different experimental conditions. Pooling data across these

experiments, unexpressed and lowly expressed genes were filtered out. The resultant data consist of

around 30% of the genes. We consider the estimation of the mean expression levels of n = 3000

genes. The primary parameter θθθ is estimated based on primary vector YYY and two auxiliary sequences

SSSU and SSSI.

In Figure S.1 (top panel), we list the 28 genes for which the Tweedie and integrative Tweedie esti-

mates disagree by more than 50%. According to PANTHER (Protein ANalysis THrough Evolutionary

Relationships) Classification System [Mi et al., 2012], those genes impact 12 molecular functions and

35 biological processes in human cells. The bottom two panels of Figure S.1 present the different

function and process types that are impacted.

S.7.2 Predicting monthly sales data example

The data is extracted from Bronnenberg et al. [2008]. We consider the monthly sales at the store level

for 4 different commodities: beer, milk, deodorant and hotdog. There are 866 stores. The distribution

of store across different US states is shown in Figure S.2. Table S.1 shows the correlation between the

different products.

In Table S.2, we report the average % gain in predictive error by the JS, T and IT estimators (using

different combinations of auxiliary sequences) over the naive unshrunken estimator δ̂t,naive = YYY t−1

for the demand prediction problem at t = 7, . . . , 12. For estimator δ̂δδ we report,

Gaint(δ̂δδ) =

∑n
i=1 σ̂

2
i (δ̂

t
i − ŷti)2∑n

i=1 σ̂
2
i (δ̂

t,naive − ŷti)2
× 100% for t = 7, . . . , 12.

The last column in Table S.2 reports the average performance of these methods over the six successive

trails. These average gains are reported in Table 2 of the main paper.

In Figure (S.3), we compare the prediction of monthly sales in August using Tweedie and IT-

M&D&H. The magnitude of side-information is marked using different colors. We can see that the

most significant differences between Tweedie and integrative Tweedie are observed in the left-tails.
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Figure S.1: Top panel: Scatterplot and names of genes where Tweedie and Integrated Tweedie effect-
size estimates disagreed by more than 50%. The other panels show the different molecular function
types and biological processes that are impacted by these genes.
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Figure S.2: Distribution of the 866 stores across different states in USA.

Table S.1: Correlation matrix of the monthly sales of different products.

Products (1) (2) (3) (4)

(1) Beer 1.00
(2) Milk 0.33 1.00
(3) Deod 0.16 0.63 1.00
(4) Hotdog 0.84 0.38 0.19 1.00

Table S.2: Monthwise % gains for monthly beer sales prediction over the naive unshrunken estimator.

July August September October November December Average

James-Stein 9.7 2.4 10.8 -2.7 -16.2 -3.7 5.7

Tweedie 7.5 7.5 9.6 -7.2 -22.6 -2.8 4

IT -Milk 11.7 5.2 9.4 -7.4 -8.8 -8.2 6

IT -Deo 11.3 5.1 10.7 -10.6 -13.7 3.7 7.1

IT -Hotdog 12.4 2.6 11.9 -3.2 -13.2 -6.5 6.8

IT-M&D 10.7 5.9 9.8 -7.4 -8.7 -7 6.1

IT-M&H 10.3 5.7 10.8 -4.3 -10.3 -4.8 6.6

IT-D&H 11.7 6.8 11 -8.2 -9.1 -0.6 7.5

IT-M&D&H 11.2 6.8 10.9 -8.1 -7.2 1.8 7.7
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Figure S.3: Scatterplot of the logarithm of beer demand estimates in the month of August. The mag-
nitudes of the corresponding auxiliary variables used in the IT estimate are reflected in the different
colors. We can see that the most significant differences between Tweedie and integrative Tweedie are
observed in the left-tails. This shows the region where the side information is most helpful.
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