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Abstract

The simultaneous estimation of many parameters based on data collected from cor-

responding studies is a key research problem that has received renewed attention in the

high-dimensional setting. Many practical situations involve heterogeneous data where

heterogeneity is captured by a nuisance parameter. Effectively pooling information across

samples while correctly accounting for heterogeneity presents a significant challenge in

large-scale estimation problems. We address this issue by introducing the “Nonparamet-

ric Empirical Bayes Structural Tweedie” (NEST) estimator, which efficiently estimates

the unknown effect sizes and properly adjusts for heterogeneity via a generalized version

of Tweedie’s formula. For the normal means problem, NEST simultaneously handles the

two main selection biases introduced by heterogeneity: one, the selection bias in the mean,

which cannot be effectively corrected without also correcting for, two, selection bias in the

variance. Our theoretical results show that NEST has strong asymptotic properties with-

out requiring explicit assumptions about the prior. Extensions to other two-parameter

members of the exponential family are discussed. Simulation studies show that NEST

outperforms competing methods, with much efficiency gains in many settings. The pro-

posed method is demonstrated on estimating the batting averages of baseball players and

Sharpe ratios of mutual fund returns.
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1 Introduction

Suppose that we are interested in estimating a vector of parameters η = (η1, . . . , ηn) based on

the summary statistics Y1, . . . , Yn from n study units. The setting where Yi | µi ∼ N(µi, σ
2)

is the most well–known example, but the broader scope includes the compound estimation

of Poisson parameters λi, Binomial parameters pi, and other members of the exponential

family.

In modern large-scale applications it is often of interest to perform simultaneous and

selective inference (Benjamini and Yekutieli 2011, Berk et al. 2013, Weinstein et al. 2013),

which has called for solving the compound estimation problem in new ways and for new

purposes. For example, there has been recent work on how to construct valid simultaneous

confidence intervals of ηi’s after a selection procedure is applied (Lee et al. 2016). In multiple

testing, as well as related ranking and selection problems, it is often desirable to incorporate

estimates of the effect sizes ηi in the decision process to prioritize the selection of more

scientifically meaningful hypotheses (Benjamini and Hochberg 1997, Sun and McLain 2012,

He et al. 2015, Henderson and Newton 2016, Basu et al. 2017).

However, the simultaneous inference of thousands of means, or other parameters, is chal-

lenging because, as described in Efron (2011), the large scale of the problem introduces selec-

tion bias, wherein some data points are large merely by chance, causing traditional estimators

to overestimate the corresponding means. Shrinkage estimation, exemplified by the seminal

work of James and Stein (1961), has been widely used in simultaneous inference. There are

several popular classes of methods, including linear shrinkage estimators (James and Stein

1961, Efron and Morris 1975, Berger 1976), non–linear thresholding–based estimators moti-

vated by sparse priors (Donoho and Jonhstone 1994, Johnstone and Silverman 2004, Abramovich et al.

2006), and both Bayes or empirical Bayes estimators with unspecified priors (Brown and Greenshtein

2009, Jiang and Zhang 2009, Castillo and van der Vaart 2012). This article focuses on a

class of estimators based on Tweedie’s formula (Robbins 1956)1. The formula is an ele-

1Tweedie’s formula appears even earlier in the astronomy literature (Dyson 1926, Eddington 1940), wherein
Frank Dyson credits the formula to Sir Arthur Eddington.
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gant shrinkage estimator, for distributions from the exponential family, that has recently

received renewed interest (Brown and Greenshtein 2009, Efron 2011, Koenker and Mizera

2014). Tweedie’s formula is simple and intuitive, and its implementation under the f -

modeling strategy for empirical Bayes estimation only requires estimating the marginal dis-

tribution of Yi. This property is particularly appealing for large–scale estimation problems

where such estimates can be easily constructed from the observed data. The resultant empir-

ical Bayes estimator enjoys optimality properties (Brown and Greenshtein 2009) and delivers

superior numerical performance. The work of Efron (2011) further convincingly demonstrates

that Tweedie’s formula provides an effective bias correction tool when estimating thousands

of parameters simultaneously.

1.1 Issues with heterogeneous data

Most of the research in this area has been restricted to models of the form f(yi | ηi) where

the distribution of Yi is solely a function of ηi. In situations involving a nuisance parameter

θ it is generally assumed to be known and identical for all Yi. For example, homoscedastic

Gaussian models of the form Yi | µi, σ
ind∼ N(µi, σ

2) involve a common nuisance parameter

θ = σ2 for all i. However, in large-scale studies when the data are collected from heteroge-

neous sources, the nuisance parameters may vary over the n study units. Perhaps the most

common example, and the setting we concentrate most on, involves heteroscedastic errors,

where σ2 varies over Yi. Microarray data (Erickson and Sabatti 2005, Chiaretti et al. 2004),

returns on mutual funds (Brown et al. 1992), and the state-wide school performance gaps

(Sun and McLain 2012) are all instances of large-scale data where genes, funds, or schools

have heterogeneous variances. Heteroscedastic errors also arise in analysis of variance and

linear regression settings (Weinstein et al. 2018). Moreover, in compound binomial prob-

lems, heterogeneity arises through unequal sample sizes across different study units. Unfor-

tunately, the conventional Tweedie’s formula assumes identical nuisance parameters across

study units and so cannot eliminate selection bias for heterogeneous data. Moreover, various

works show that failing to account for heterogeneity leads to inefficient shrinkage estimators
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(Weinstein et al. 2018), methods with invalid false discovery rates (Efron 2008, Cai and Sun

2009), unstable multiple testing procedures (Tusher et al. 2001) and suboptimal ranking and

selection algorithms (Henderson and Newton 2016), exacerbating the replicability crisis in

large-scale studies. Few methodologies are available to address this issue.

For Gaussian data, a common goal is to find the estimator, or make the decision, that

minimizes the expected squared error loss. A plausible–seeming solution might be to scale

each Yi by its estimated standard deviation Si so that a homoscedastic method could be

applied to Xi = Yi/Si, before undoing the scaling on the final estimate of µi. Indeed, this

is essentially the approach taken whenever we compute standardized test statistics, such

as t–values and z–values. A similar standardization is performed in the Binomial setting

when we compute p̂i = Xi/mi, where Xi is the number of successes and mi the number

of trials. However, this approach, which disregards important structural information, can

be highly inefficient. More advanced methods have been developed, but all suffer from

various limitations. For instance, the methods proposed by Xie et al. (2012), Tan (2015),

Jing et al. (2016), Kou and Yang (2017), and Zhang and Bhattacharya (2017) are designed

for heteroscedastic data but assume a parametric Gaussian prior or semi-parametric Gaussian

mixture prior, which leads to loss of efficiency when the prior is misspecified. Moreover,

existing methods, such as Xie et al. (2012) and Weinstein et al. (2018), often assume that the

nuisance parameters are known and use a consistent estimator for implementation. However,

when a large number of units are investigated simultaneously, traditional sample variance

estimators may similarly suffer from selection bias, which often leads to severe deterioration

in the MSE for estimating the means.

1.2 The proposed approach and main contributions

In the homogeneous setting, Tweedie’s formula estimates ηi using the score function of Yi,

but that approach does not immediately extend to heterogeneous data. Instead, this ar-

ticle proposes a two–step approach, “Nonparametric Empirical Bayes Structural Tweedie”

(NEST), which first estimates the bivariate score function for data from a two–parameter
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exponential family, and second predicts ηi using a generalized version of Tweedie’s formula

that effectively incorporates the structural information encoded in the variances. A signifi-

cant challenge in the heterogeneous setting is how to pool information from different study

units effectively while accounting for the heterogeneity captured by the possibly unknown

nuisance parameters. NEST addresses the issue by proposing a double shrinkage method

that simultaneously incorporates the structural information encoded in both the primary

(e.g. Yi) and auxiliary (e.g. Si) data.

NEST has several clear advantages. First, it simultaneously handles the two main se-

lection biases introduced by heterogeneity: one, selection bias in the primary parameter

(mean), which cannot be effectively corrected without also correcting for, two, selection bias

in the nuisance parameter (variance). By producing more accurate estimates for the nui-

sance parameters, NEST in general renders improved shrinkage factors for estimating the

primary parameters. Second, NEST makes no explicit assumptions about the prior since

it uses a nonparametric method to directly estimate the bivariate score function. Third,

NEST exploits the structure of the entire sample and avoids the information loss that oc-

curs in the discretization step used in grouping methods (Weinstein et al. 2018). Fourth,

NEST only requires a few simple assumptions to achieve strong asymptotic properties. Fi-

nally, NEST provides a general estimation framework for members of the two-parameter

exponential family. It is fast to implement, produces stable estimates, and is robust against

model mis-specification. We demonstrate numerically that NEST can provide high levels of

estimation accuracy relative to a host of benchmark methods.

1.3 Organization

The rest of the paper is structured as follows. In Section 2 we first introduce our hierarchical

Gaussian model where both the mean and variance parameters are unknown, and then discuss

a version of Tweedie’s formula that uses sample variances in Section 2.1. Section 2.2 presents

the generalized Tweedie’s formula for our hierarchical model which is subsequently used to

introduce the oracle NEST estimator in Section 2.3. We then develop a convex optimization
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approach in Section 3 for estimating the unknown shrinkage factors in the oracle NEST

formula. In Section 4, we describe the theoretical setup, justify the optimization criterion, and

finally establish asymptotic theories for the proposed NEST estimator. Simulation studies

are carried out in Section 5 to compare NEST to competing methods. Two data applications

are presented in Section 6. The proofs, as well as additional theoretical and numerical results,

are provided in the supplementary material.

2 Double Shrinkage Estimation on Heteroscedastic Normal

Data

In the main text of this article, we focus on the normal means problem; extensions of the

methodology to other members of the two-parameter exponential family are discussed in

Section B of the supplementary material.

Suppose we collect mi observations for the ith study unit, i = 1, . . . , n. The data are

normally distributed obeying the following hierarchical model:

Yij | µi, τi
i.i.d∼ N(µi, 1/τi), j = 1, . . . ,mi, (2.1)

µi |τi ind∼ Gµ(·|τi), τi
i.i.d∼ Hτ (·), i = 1, . . . , n.

We view µi and τi, both of which are unknown, as the primary and nuisance parameters,

respectively. The prior distributions Gµ(·|τi) and Hτ (·) are unspecified. When the precisions

τi are known in Model (2.1), compound estimation of the means µ = (µ1, . . . , µn)
T under

the squared error loss has received significant attention in recent years (see for example

Weinstein et al. (2018), Xie et al. (2012), Cai et al. (2021), Soloff et al. (2021) and the refer-

ences therein). Here, we develop a nonparametric empirical Bayes method for estimating µ

under the squared error loss when τi are unknown.
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2.1 Tweedie’s formula with estimated sample variances

Let Yi = m−1
i

∑mi

j=1 Yij and S2
i = (mi − 1)−1

∑mi

j=1(Yij − Yi)
2 respectively denote the sam-

ple mean and sample variance under Model (2.1). Further, let Y = (Y1, . . . , Yn) and S =

(S2
1 , . . . , S

2
n) be the vectors of summary statistics, and y = (y1, . . . , yn) and s = (s21, . . . , s

2
n)

the observed values. Denote δ = (δ1, . . . , δn)
T an estimator for µ based on (Y ,S). Con-

sider the squared error loss ln(µ, δ) = n−1
∑n

i=1 ℓ(µi, δi), where ℓ(µi, δi) = (δi − µi)
2. The

compound Bayes risk is

r(δ,G) = 1

n

n
∑

i=1

E{ℓ(µi, δi)} =
1

n

n
∑

i=1

∫ ∫ ∫

ℓ(µi, δi)f(y, s
2 | ψi)dyds

2dG(ψi), (2.2)

where ψi = (µi, τi), G(ψi) = Gµ(µi|τi)Hτ (τi), and f(y, s2 | ψi) is the likelihood function of

(Yi, S
2
i ). The Bayes estimator that minimizes (2.2) is given by δδδπ = (δπ1 , . . . , δ

π
n), where

δπi := δπ(yi, s
2
i ,mi) = E(µi | Yi = yi, S

2
i = s2i ,mi). (2.3)

When the precisions are known, the estimator minimizing the expected squared error loss is,

E(µi | Yi = yi, τi,mi) = yi +
1

miτi
w1(yi;mi, τi), (2.4)

where w1(y;m, τ) :=
∂

∂y
log fm,τ (y) and fm,τ (·) is the pdf of the marginal distribution of Y .

Equation (2.4) is the celebrated Tweedie’s formula with known variances (Efron 2011) which

forms the basis for f -modeling strategies for estimating µi, and only requires estimation

of the score functions w1(yi;mi, τi) in order to compute the estimator. This is particularly

appealing in large-scale studies where one observes thousands of (Yi, τi), making it possible to

obtain an accurate estimate of w1(yi;mi, τi) (see Section B of the supplementary material for

more details). However, when the precisions are unknown, Model (2.1) in its full generality

does not allow a closed-form expression for δπi given in (2.3). In this setting a Tweedie-type

formula, such as the one given by (2.4), is not readily available. In such a scenario existing

methods, such as Xie et al. (2012), Weinstein et al. (2018), rely on the sample variance S2
i , a
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consistent estimator of the unknown population variance 1/τi, for practical implementation.

For instance, Definition 1 presents the oracle Tweedie’s formula with sample variance which

is a natural counterpart to Equation (2.4) when the variance is unknown.

Definition 1 (Oracle Tweedie’s formula with sample variances) Consider the hierarchical

Model (2.1) and let fm(y, s2) =
∫

fm(y, s2 | ψ)dG(ψ) denote the joint density of (Y, S2).

Then an estimator for µi is δTFi where,

δTFi := δTF(yi, s
2
i ,mi) = yi +

s2i
mi

w1(yi, s
2
i ;mi),

and w1(y, s
2;m) :=

∂

∂y
log fm(y, s2).

In Definition (1), δTFi involves the score function w1i := w1(yi, s
2
i ;mi) which is unknown in

practice. We discuss its estimation in Section 3. While δTFi is an approximation to δπi , Propo-

sition 1 establishes that the oracle Tweedie’s estimator with sample variances dominates the

sample mean estimator under a squared error loss function.

Proposition 1 Suppose fm(y, s2) is a log-concave density and w1(y, s
2;m) is a non-decreasing

function of s2. Then under Model (2.1) and for mi > 3, we have,

r(δπ,G) < r(δTF,G) < r(Y ,G).

However, when a large number of units are investigated simultaneously, traditional sample

variance estimators may suffer from selection bias (Jing et al. 2016, Kwon and Zhao 2018),

and their direct use may lead to severe deterioration in the MSE for estimating the means. By

contrast, our approach relies on carefully constructed shrinkage factors for both the sample

mean and sample variance, which ultimately provide a much improved approximation to δπi .

The key idea is to exploit the exponential family representation of the posterior distribution

of (µi, τi) to first derive a generalized Tweedie’s formula for the canonical parameters (τiµi, τi)

(Section 2.2) and then employ the canonical formulas to construct our oracle NEST estimator
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(Section 2.3).

2.2 Generalized Tweedie’s formula for a heteroscedastic Normal model

In this section we present the generalized Tweedie’s formula for the canonical parameters

(τiµi, τi) under Model (2.1). To this end we exploit the properties of the two-parameter

exponential family to form a new representation of the posterior distribution of (µi, τi) in

Proposition 2. This useful representation is subsequently employed in Corollary 1 to construct

a generalized Tweedie’s formula for the canonical parameters. Finally, Definition 2 (Section

2.3) introduces the oracle version of our proposed NEST estimator of µi.

Proposition 2 Consider hierarchical Model (2.1) with mi > 3. Let fm(y, s2) =
∫

fm(y, s2 |

ψ)dG(ψ) denote the joint density of (Y, S2). The posterior distribution of (µi, τi) belongs to

a two-parameter exponential family with density

fmi
(µi, τi|yi, s2i ) ∝ exp

{

ηTi T (µi, τi)−A(ηi)
}

gµ(µi|τi)hτ (τi),

where T (µi, τi) = (τiµi, τi/2),ηi =
{

miyi,−miy
2
i − (mi − 1)s2i

}

:= (η1i, η2i), γ(η1i, η2i) =

−η2i−m−1

i η2
1i

mi−1 and A(ηi) = −1
2(mi − 3) log γ(η1i, η2i) + log fmi

{

m−1
i η1i, γ(η1i, η2i)

}

.

The two-parameter exponential family representation of the joint posterior distribution

of (µi, τi) in Proposition 2 is particularly useful because, as shown in Corollary 1, it allows

one to explicity compute the Bayes estimators of the canonical parameters ζi := τiµi and τi.

Corollary 1 (Generalized Tweedie’s formula for the canonical parameters) Under

the hierarchical Model (2.1) with mi > 3, the Bayes estimators of (ζi, τi) under squared error

loss are, respectively,

ζ̂πi := ζ̂π(yi, s
2
i ,mi) = E(ζi|yi, s2i ,mi) = yiE(τi|yi, s2i ,mi) +m−1

i w1(yi, s
2
i ;mi), (2.5)

τ̂πi := τ̂π(yi, s
2
i ,mi) = E(τi|yi, s2i ,mi) =

mi − 3

(mi − 1)s2i
− 2

mi − 1
w2(yi, s

2
i ;mi), (2.6)
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where w1(y, s
2;m) :=

∂

∂y
log fm(y, s2), w2(y, s

2;m) :=
∂

∂s2
log fm(y, s2).

Corollary 1 is significant for several reasons. First, it generalizes Tweedie’s formula, which

can be recovered from Equation (2.5) by treating τi as a known constant and dividing both

sides by τi. Second, τ̂πi in Equation (2.6) has an interesting interpretation. Apart from

being the Bayes estimate of τi under the squared error loss, 1/τ̂πi is the Bayes estimate

of 1/τi under Stein’s loss (James and Stein 1961). Third, Corollary 1 can be employed to

construct estimators for functions of (ζi, τi) such as the Sharpe ratio in finance applications

(Section 6.2). Finally, Corollary 1 provides the key result for defining our oracle NEST

estimator in the next section.

2.3 The oracle NEST estimator

In this section we first present the oracle NEST estimator, and then discuss its theoretical

properties.

Definition 2 Consider hierarchical Model (2.1) with mi > 3. Then the oracle NEST esti-

mator is

δ∗i := δ∗(yi, s
2
i ,mi) =

ζ̂π(yi, s
2
i ,mi)

τ̂π(yi, s2i ,mi)
= yi +

s2i
mi

γ(yi, s
2
i ,mi)w1(yi, s

2
i ,mi), (2.7)

where γ(yi, s
2
i ,mi) =

mi − 1

mi − 3− 2s2iw2(yi, s2i ;mi)
.

The oracle NEST estimator in Equation (2.7) is a ratio of ζ̂πi and τ̂πi , and it involves

the shrinkage factor γi := γ(yi, s
2
i ,mi) that should be applied to s2i when τi is unknown.

This shrinkage factor is, by construction, positive and depends on w2i := w2(yi, s
2
i ;mi) that

controls the magnitude of shrinkage that is applied to the sample variance s2i . In practical

applications, however, the score functions w1i and w2i are unknown. In Section 3, we develop

a data-driven NEST estimator with estimated scores.

Equation (2.7) has a striking similarity to Tweedie’s formula of Definition 1 in the sense

11



that δ∗i involves an unbiased estimate yi of µi plus a shrinkage factor. The key difference from

Tweedie’s formula, however, is that while the shrinkage factor in δ∗i relies on γi, Tweedie’s

formula uses sample variances s2i . Proposition 3 below shows that this difference is important

because the estimation risk, under a squared error loss function, of δ∗ = (δ∗i , . . . , δ
∗
n) is

uniformly smaller than that of δTF = (δTFi , . . . , δTFn ).

We impose the following regularity conditions for comparing the estimation risks of δ∗

and δTF in Proposition 3.

Assumption 1 The shrinkage factor γ(y, s2,m) satisfies (a) E

[

S2γ(Y, S2,m)
∣

∣

∣
µ, τ

]

≤ 1/τ ,

(b) s2γ(y, s2,m) is non-decreasing in s2, and (c) γ(y, s2,m) is non-increasing in s2.

Assumption 2 Let ω(y, s2;m) := w1(y, s
2;m)

∂

∂y
w2(y, s

2;m). Then (a) ω(y, s2;m) ≤ 0

and, (b) ω(y, s2;m) is non-decreasing in s2.

Assumptions 1 and 2 are regularity conditions on the behavior of the shrinkage factor γ and

the score functions w1, w2. For instance, Assumption 1(a), together with E[γ(Y, S2,m)] ≤ 1,

guarantees that Cov[S2, γ(Y, S2,m)] ≤ 0. Assumptions 1(b) and 1(c) enforce monotonicity,

respectively, on the Bayes estimator of the precision (Equation (2.6)) and the shrinkage factor

γ(y, s2,m). These conditions are satisfied, for example, when (µ, τ) have a conjugate prior

under Model 2.1. Similarly, Assumption 2 holds under conjugate priors and is also true when

the prior on τ is discrete with just one mass point. Proposition 1 can be extended as follows.

Proposition 3 Let fm(y, s2) be a log-concave density. Suppose Assumptions 1 – 2 hold.

Then under Model (2.1) and for mi > 7, we have,

r(δπ,G) < r(δ∗,G) < r(δTF,G) < r(YYY ,G).

The oracle NEST estimator δ∗i is, in general, different from the Bayes estimator δπi : δ
π
i has full

knowledge of the prior distributionsGµ(·|τ) andHτ (·), whereas δ∗i has only the information on

the true score functions (w1i, w2i). The departure reflects the intrinsic difficulty in estimating
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µi (other than the canonical parameter TTT ) using an f -modeling approach when the variances

are unknown. However, it is worth doing f -modeling for several reasons. First, under the

special setting of a conjugate prior on (µ, τ), Corollary 1 in Section 4.2 shows that δ∗i coincides

with δπi . Second, in situations where δ∗i and δπi do not coincide, our empirical results suggest

that the efficiency gain of the data-driven NEST estimator over competing linear shrinkage

methods (Xie et al. 2012, Weinstein et al. 2018) and Tweedie’s formula (Definition 1), both

of which use plug-in sample variances, is substantial across many settings.

2.4 Connection to existing works

There are two main modeling strategies for the empirical Bayes (EB) estimation of nor-

mal means, respectively known as the g-modeling and f -modeling strategies in the termi-

nology of Efron (2014). The idea of g-modeling is to first obtain a deconvoluting esti-

mate of Gµ in Equation 2.1, denoted Ĝµ, and then predict µi by plugging Ĝµ into Bayes

rule. Ĝµ can be constructed via the nonparametric maximum likelihood estimate (NPMLE;

Kiefer and Wolfowitz 1956, Laird 1978), or be modeled by distributions in a low-dimensional

exponential family (Efron 2014). Some notable works along this line include Jiang and Zhang

(2009), Koenker and Mizera (2014), Gu and Koenker (2017a), Saha and Guntuboyina (2020),

and Soloff et al. (2021). By contrast, the f -modeling strategy directly predicts µi based on

Tweedie’s formula (or its generalized version), which only depends on the marginal density

f , sidestepping the need of deconvoluting estimation. Notable works along this line include

Brown and Greenshtein (2009) and Efron (2011), both of which use sample variances. NEST

adopts the f -modeling strategy and has two advantages over existing f -modeling methods.

First, we provide in Proposition 3 precise conditions under which the oracle NEST esti-

mator dominates Tweedie’s estimator with sample variances (cf. Definition 1). Second, in

contrast with existing f -modeling methods, we develop a convex optimization approach to

construct a data-driven rule that is fast, stable, and capable of incorporating various struc-

tural constraints. Our numerical results show that the data-driven NEST offers substantial

improvement in the estimation risk over other f -modeling methods.
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The g-modeling approach via the NPMLE provides an excellent tool for EB estimation

of heteroscedastic means. NPMLE is competitive to NEST in most of our numerical studies.

However, to the best of our knowledge, the asymptotic properties of the NPMLE are highly

nontrivial to establish and often require strong assumptions. For instance, the analysis in

Saha and Guntuboyina (2020) only works for a limited class of covariance structures, and

the theory on the rate of convergence is applicable only when the degree of heteroscedasticity

is “mild”; alternatively the analysis in Soloff et al. (2021) assumes that µi are independent

of σi, which is often violated in practice (Weinstein et al. 2018). In contrast, we establish

the asymptotic properties of NEST without assumptions on the degree of heteroscedasticity

or independence between µi and σi.

A key advantage of g-modeling is its capability to deal with a wider range of problems,

particularly those in which direct use of the marginal density f itself cannot yield a solution.

Meanwhile, the f -modeling approach, which often has a simple and intuitive form (e.g.

Tweedie’s formula), is attractive when only the information of the marginal distribution

is needed for solving the problem of interest. The merit and simplicity of f -modeling are

particularly manifested in our theoretical analysis of Section 4.

3 Estimation of shrinkage factors via convex optimization

In this section we discuss the estimation of the shrinkage factors and introduce the data-driven

NEST estimator in Definition 3. We begin by introducing some notation. Let x = (y, s2)

be a generic pair of observations from the distribution with marginal density fm(x), which

we assume is continuously differentiable with support on X ⊆ R × R
+. Denote the score

function

w(x;m) = ∇x log fm(x) := {w1(x;m), w2(x;m)} . (3.8)

Next, for i = 1, . . . , n, let zi = (xi,mi) where x
i is an observation from a distribution with

density fmi
(x).
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3.1 Convex optimization

We first describe the methodology and then provide explanations. LetK(zi,zj) = exp{−(zi−

zj)TΩ(zi − zj)/2} be the Radial Basis Function (RBF) kernel, with Ω3×3 being the inverse

of the sample covariance matrix of (z1, . . . ,zn). Denote

Wn×2
0 =

{

w(x1;m1), . . . ,w(xn;mn)
}T

, where (3.9)

w(xi;mi) = ∇x log fmi
(x)
∣

∣

∣

x=xi

:=
{

w1(x
i;mi), w2(x

i;mi)
}

.

We denote wk(x
i;mi) by wki, k = 1, 2, for the remainder of this article.

Let ∇
zj
k

K(zi,zj) be the partial derivative of K(zi,zj) with respect to the kth component

of zj . The following matrices are needed in our proposed estimator:

Kn×n = [Kij ]1≤i≤n,1≤j≤n, ∇Kn×2 = [∇Kik]1≤i≤n,1≤k≤2 ,

whereKij = K(zi,zj) and∇Kik =
∑n

j=1∇zj
k

K(zi,zj). Next we formally define our proposed

Nonparametric Empirical-Bayes Structural Tweedie (NEST) estimator.

Definition 3 Consider hierarchical Model (2.1) with mi > 3. For a fixed regularization

parameter λ > 0, let Ŵn(λ) = (ŵ1
λ, . . . , ŵ

n
λ)

T , where ŵi
λ = (ŵi

1,λ, ŵ
i
2,λ), be the solution to

the following quadratic optimization problem:

min
W∈Rn×2

1

n2
trace

(

WTKW + 2WT
∇K

)

+ ρn(W;λ), (3.10)

where ρn(W;λ) is a penalty on the elements of W. Then the NEST estimator for µi is

δdsi (λ) = yi +
s2i
mi

γ̂i(λ)ŵ
i
1,λ, (3.11)

where γ̂i(λ) =
mi − 1

mi − 3− 2s2i ŵ
i
2,λ

, (3.12)

with the superscript ds denoting “double shrinkage”.
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Although not immediately obvious, we show in Section 4 that, under the compound

estimation setting, minimizing the first term in the objective function (3.10) is asymptot-

ically equivalent to minimizing the kernelized Stein’s discrepancy (KSD; Liu et al. 2016,

Chwialkowski et al. 2016). Roughly speaking, the KSD measures how far a given n× 2 ma-

trix W is from the true score matrix W0. A key property of the KSD is that it is always

non-negative and is equal to 0 if and only if W and W0 are equal. Hence, solving the convex

program (3.10) is equivalent to finding a Ŵ that is as close as possible to W0. Since the oracle

NEST estimator in Definition 2 is constructed based on W0, we can expect that the data-

driven NEST estimator based on Ŵ would be asymptotically optimal. Theory underpinning

this intuition are established in Section 4.

The second term in Equation (3.10), ρn(W;λ), is a penalty function that increases

as the elements of W move further away from 0. In this article, we take ρn(W;λ) =

(λ/n2)
∑n

i=1

∑2
k=1W2

ik = (λ/n2)‖W‖2F , where Wik are the elements of matrix W and ‖W‖F
is the Frobenius norm of W. A large λ forces the estimated shrinkage factors towards 0, and

in the limit the NEST estimate is simply the unbiased estimate yi. An alternative approach,

as pursued in James et al. (2020), is to penalize the lack of smoothness in w as a function

of x.

A key characteristic of δdsi (λ) in Equation (3.11) is that it exploits the joint structural

information available in both Yi and S2
i through Ŵn(λ). Although the loss function only

involves the means, we perform shrinkage on both the mean and variance dimensions. In-

specting Equations (3.11) and (3.12), we expect that the improved accuracy achieved by

γ̂i(λ) will lead to better shrinkage factors for δdsi (λ) and hence additional reduction in the

estimation risk. Our numerical results in Sections 5 and 6 reveal that this is indeed true and

the proposed NEST estimator dominates other linear shrinkage estimators and Tweedie’s

formula across many settings. In Section B of the supplementary material we adopt a similar

strategy to extend the estimation framework presented in Definition 3 to other distributions

in the two-parameter exponential family where the nuisance parameter is known.

We end this section with a discussion of the simpler case of equal sample sizes, i.e. mi = m
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for all i. For instance, the leukemia dataset analyzed in Jing et al. (2016) consists of the

expression levels of n = 5,000 genes for m = 27 acute lymphoblastic leukemia patients. The

heterogeneity across the n units is due to the intrinsic variability instead of the varied number

of replicates. When the mi’s are equal, the RBF kernel K(·, ·) needs to be modified to avoid

a singular sample covariance matrix. Denote K(xi,xj) = exp{−0.5(xi − xj)TΩ(xi − xj)}

the modified RBF kernel with Ω2×2 being the inverse of the sample covariance matrix of

(x1, . . . ,xn). Correspondingly in Definition 3, Ŵn(λ) are the estimates of the shrinkage

factors Wn×2
0 =

{

w(x1;m), . . . ,w(xn;m)
}T

, where w(xi;m) =
{

w1(x
i;m), w2(x

i;m)
}

:=

(w1i, w2i).

3.2 Details around implementation

In this section we discuss details around the implementation of NEST. First note that Equa-

tion (3.10) can be solved separately for the two columns of W, which respectively yield

the estimates for w1i and w2i. Next, the solution to Equation (3.10), with our penalty

ρn(W;λ) = (λ/n2)‖W‖2F , is available in the closed form of Ŵn(λ) = −B(λ)∇K, where

B(λ) = (K + λI)−1. However, in our implementation the closed form solution is replaced

by a convex program that directly solves (3.10) with constraint Wa � b, where a = (0, 1)T

and b = (b1, . . . , bn) with bi =
1
2(mi − 3)/s2i − κ for some κ > 0. Inspecting Equation (3.12)

shows that adding this constraint guarantees that γ̂i(λ) < ∞. This is desirable in both

numerical and theoretical analyses. Similar ideas have been used in the seminal work of

Koenker and Mizera (2014).

The practical implementation requires a data-driven scheme for choosing λ. We propose

to use a variation of the modified cross validation scheme of Brown et al. (2013), which

involves splitting Yij into two parts: Uij = Yij − (1/α)ǫij and Vij = Yij + αǫij , where

ǫij ∼ N(0, τ−1
i ), and Uij and Vij are used to construct the estimator and to choose the

tuning parameter, respectively. However in our setup τi is unknown; hence we sample ǫij’s

from N(0, S̄2) where S̄2 = n−1
∑n

i=1 S
2
i . Let V̄i = m−1

i

∑mi

j=1 Vij , Ūi = m−1
i

∑mi

j=1 Uij ,

U = {Uij : 1 ≤ i ≤ n, 1 ≤ j ≤ mi} and V = {Vij : 1 ≤ i ≤ n, 1 ≤ j ≤ mi}. Then

17



conditional on (µi, τi), Ūi and V̄i are approximately independent with mean E(Yi) when

m is large. Define ϑn(λ;U ,V) =
1

n

∑n
i=1

{

V̄i − δdsi (Ūi;U , λ)
}2

. The tuning parameter will

be chosen as λ̂ := argminλ∈Λϑn(λ). In our numerical studies of Sections 5 and 6, we set

α = 1/2, Λ = [10−2, 52]. The tuning parameter λ̂ is obtained from this scheme and then used

to estimate µi via Equation (3.11).

Remark 1 ϑn(λ;U ,V) provides a practical criterion for choosing λ and works well empir-

ically in our numerical studies. However, ϑn is not an unbiased estimate of the true risk.

We note in Section 5 that the relative risk of the data-driven NEST is slightly off from 1

when m = 10 (e.g. the left panels in Figures 1 & 2). As m increases the covariance between

Uij and Vij converges to 0 and the risk of our data-driven estimator is almost identical to

that of an oracle (which selects the optimal λ based on the true risk). The development of

a SURE criterion for this setting is a challenging topic requiring further research. See also

Ignatiadis and Wager (2019) for related discussions.

We are developing an R package, nest, to implement the NEST estimator in Definition

3. The R code that reproduces the numerical results in Sections 5 and 6 can be downloaded

from the link: https://www.dropbox.com/sh/vh3b48zuq4axo0b/AAD4zTsTqPGLRqzK7CiNW5Iya?dl=0.

4 Theory

In this section we introduce the Kernelized Stein’s Discrepancy (KSD) measure (Liu et al.

2016, Chwialkowski et al. 2016) and discuss its connection to the quadratic program (3.10).

While the KSD has been used in various contexts including goodness of fit tests (Liu et al.

2016, Yang et al. 2018), variational inference (Liu and Wang 2016) and Monte Carlo inte-

gration (Oates et al. 2017), its connections to compound estimation and empirical Bayes

methodology was established only recently (Banerjee et al. 2020). The analysis in this and

following sections is geared towards the case mi = m for i = 1, . . . , n. Under this setting,

(x1, . . . ,xn) constitute an i.i.d random sample from fm(x). The case of unequal mi’s can be
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analyzed in a similar fashion by first assuming that mi’s are a random sample from a distribu-

tion with mass function q(·) and are independent of (µi, τi). Then z = (x,m) has distribution

with density p(z) := q(m)fm(x), where zi = (xi,mi), (z
1, . . . ,zn) are realizations of an i.i.d

random sample from p(z).

4.1 Kernelized Stein’s Discrepancy

SupposeX andX ′ are i.i.d. copies from the marginal distribution of (Y, S2) that has density

f wherein the dependence on m is implicit. Denote w(X) and w(X ′), defined in Equation

(3.8), to be the score functions at X and X ′ respectively. Suppose f̃ is an arbitrary density

function on the support of (Y, S2), for which we similarly define w̃(X). The KSD, formally

defined as

S(f, f̃) = EX,X′∼f

[{

w̃(X)−w(X)
}T

K(X,X ′)
{

w̃(X ′)−w(X ′)
}]

, (4.13)

provides a discrepancy measure between f and f̃ in the sense that S(f, f̃) tends to increase

when there is a bigger disparity between w and w̃ (or equivalently, between f and f̃), and

S(f, f̃) ≥ 0 and S(f, f̃) = 0 if and only if f = f̃ .

The direct evaluation of S(f, f̃) is difficult because w is unknown. Liu et al. (2016) intro-

duced an alternative representation of the KSD that does not directly involve w:

S(f, f̃) = Efκ[w̃(X), w̃(X ′)](X,X ′)

= Ef







1

n(n− 1)

n
∑

i=1

n
∑

j=1

κ[w̃(Xi), w̃(Xj)](Xi,Xj)I(i 6= j)







= Ef

[

M̄n(W̃)
]

:= M(W̃), (4.14)
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where {X1, . . . ,Xn} is a random sample from f , Ef denotes expectation under f and

κ[w̃(x), w̃(x′)](x,x′) = w̃(x)T w̃(x′)K(x,x′) + w̃(x)T∇x′K(x,x′) +∇xK(x,x′)T w̃(x)

+ trace(∇x,x′K(x,x′)) (4.15)

is a smooth and symmetric positive definite kernel function associated with the U-statistic

M̄n(W̃). The implementation of the NEST estimator in Definition 3 boils down to the

estimation of W0 via the convex program (3.10), which corresponds to minimizing

M̂λ(n),n(W̃) =
1

n2

n
∑

i=1

n
∑

j=1

κ[w̃(Xi), w̃(Xj)](Xi,Xj) +
λ(n)

n2
‖W̃‖2F (4.16)

w.r.t. W̃. A key observation is that if the empirical criterion M̂λ(n),n(W̃) is asymptotically

equal to the population KSD criterion M(W̃), then minimizing M̂λ(n),n(W̃) with respect to

W̃ is effectively the process of finding an W̃ that is as close as possible to W0 in Equation

(3.9). This intuitively justifies the NEST estimator in Definition 3. In what follows, we

denote λ(n) by λ and keep its dependence on n implicit. Next we show that the NEST

estimator in Definition 3 is asymptotically close to its oracle counterpart.

4.2 Asymptotic Properties of NEST

This section studies the asymptotic properties of the NEST estimator. We begin by recalling

the oracle NEST estimator δ∗ = (δ∗1 , . . . , δ
∗
n) for µ, where

δ∗i := δ∗(yi, s
2
i ,m) =

ζ̂π(yi, s
2
i ,m)

τ̂π(yi, s2i ,m)
= yi +

s2i
m

γ(yi, s
2
i ;mi)w1(yi, s

2
i ,m), (4.17)

and ζ̂π and τ̂π are respectively the Bayes estimators of τµ and τ as defined in Equation

(2.5). Viewing the proposed NEST estimator δdsi (λ) as a data-driven approximation to δ∗i ,

we study the quality of this approximation for large n and fixed m.

We impose the following regularity conditions where f denotes the density function of
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the joint marginal distribution of (Y, S2) and Ef denotes expectation under f .

Assumption 3 Ef |κ[w̃(Xi), w̃(Xj)](Xi,Xj)|2 < ∞ for any (i, j) ∈ {1, . . . , n}.

Assumption 4
∫

X g(x)TK(x,x′)g(x′)dxdx′ > 0 for any g : X → R
2 s.t. 0 < ‖g‖22 < ∞.

Assumption 5 For some ǫi ∈ (0, 1), i = 1, 2, 3, EG{exp(ǫ1|µ|)} < ∞, EH{exp(ǫ2/τ)} < ∞

and EH{exp(ǫ3τ)} < ∞.

Assumption 3 is a standard moment condition on κ[w̃(Xi), w̃(Xj)](Xi,Xj) [see, for ex-

ample, Section 5.5 in Serfling (2009)] , which is needed for establishing the Central Limit

Theorem for the U-statistic M̄n(W̃) in Equation (4.14). Assumption 4 is a condition from

Liu et al. (2016), Chwialkowski et al. (2016) for ensuring that K(x,x′) is integrally strictly

positive definite. This guarantees that the KSD S(f, f̃) is a valid discrepancy measure in the

sense that S(f, f̃) ≥ 0 and S(f, f̃) = 0 if and only if f = f̃ . Assumption 5 represents mo-

ment conditions on the prior distributions. Together, they ensure that with high probability

|µ| ≤ log n and 1/ log n ≤ τ ≤ log n as n → ∞. This is formalized in Lemma 3 in Section A.6

of the supplementary material. These conditions allow a cleaner statement of our theoretical

results. It is likely that Assumption 5, which is mild, can be further relaxed but we do not

seek the full generality here.

Theorem 1 below establishes the asymptotic consistency of the sample criterion M̂λ,n(W̃)

around the population criterion M(W̃).

Theorem 1 If λ(n)/
√
n → 0 as n → ∞ then, under Assumption 3, we have

∣

∣M̂λ,n(W̃)−M(W̃)
∣

∣ = Op

(

n−1/2
)

.

Moreover, along with the fact that M(W0) = 0, Theorem 1 justifies M̂λ,n(W̃) as an appro-

priate optimization criterion.

Theorem 2 establishes the consistency of the estimated score functions.
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Theorem 2 If limn→∞ cnn
−1/2 = 0 then under the conditions of Theorem 1 and Assumption

4, we have

lim
n→∞

P

{1

n

∥

∥Ŵn(λ)−W0

∥

∥

2

F
≥ c−1

n ǫ
}

= 0, for any ǫ > 0.

Theorem 3 establishes the optimality theory of δds by showing that (a) the average

squared error between δds(λ) and δ∗ is asymptotically small, and (b) the estimation loss of

NEST converges in probability to that of its oracle counterpart as n → ∞.

Theorem 3 Suppose λ(n)/
√
n → 0 as n → ∞ and Assumptions 3 – 5 hold. If limn→∞ cnn

−1/2 log6 n =

0, then
cn
n

∥

∥δds(λ) − δ∗
∥

∥

2

2
= op(1). Furthermore, if additionally limn→∞ cnn

−1/4 log6 n = 0,

then cn
∣

∣ln(δ
ds(λ),µ) − ln(δ

∗,µ)
∣

∣ = op(1).

As mentioned earlier, δ∗i in Equation (4.17) is not, in general, the Bayes estimator δπi of

µi. This follows since, dropping subscript i,

δ∗(y, s2) =
E(τµ|y, s2)
E(τ |y, s2) =

E[τE(µ|y, s2, τ)|y, s2]
E(τ |y, s2) 6= E(µ|y, s2) = δπ(y, s2)

unless µ and τ are conditionally independent given y and s2, in which case δ∗(y, s2) =

δπ(y, s2). A natural setting where E(µ|y, s2, τ) is indeed independent of τ is the popular

scenario of conjugate priors under which the posterior expectation of µ is a linear combination

of the prior expectation of µ and the maximum likelihood estimate y (Diaconis and Ylvisaker

1979).

Corollary 2 Consider hierarchical Model (2.1) where Gµ(·|τ) and Hτ (·) are, respectively,

conjugate prior distributions of µ|τ and τ . Under the conditions of Theorem 3, if limn→∞ cnn
−1/2 log6 n =

0, then

cn
n

∥

∥δds(λ)− δπ
∥

∥

2

2
= op(1).

Furthermore, under the same conditions, if limn→∞ cnn
−1/4 log6 n = 0, then

cn
∣

∣ln(δ
ds(λ),µ) − ln(δ

π ,µ)
∣

∣ = op(1).
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Corollary 2 is a straightforward consequence of Theorem 3 and the fact that under the

hierarchical model of Equation (2.1) with conjugate priors, δ∗ = δπ.

5 Numerical Experiments

In this section we assess the performance of the NEST estimation framework for the following

two compound estimation problems: estimation of Normal means with unknown variances

(Section 5.1) and estimation of Sharpe ratios θi = miµi
√
τi for i = 1, . . . , n (Section 5.2).

5.1 Compound Estimation of Normal Means - unknown variances

We focus on the hierarchical Model of Equation (2.1) and compare seven approaches for esti-

mating µ when the variances σi = 1/τi are assumed to be unknown. These approaches can be

categorized into three types: the first consists of the NEST oracle method (NEST orc), which

estimates λ by minimizing the true loss, the proposed NEST method and Tweedie’s formula

(TF) that uses sample variances. For both NEST and TF, λ is chosen using modified cross-

validation. The second are linear shrinkage methods: the group linear estimator (Grp linear)

of Weinstein et al. (2018); the semi-parametric monotonically constrained SURE estimator

that shrinks towards the grand mean (XKB.SG) from Xie et al. (2012); and from the same

paper, the parametric SURE estimator that shrinks towards a general data driven location

(XKB.M). Finally, the third type is the g-modelling approach of Gu and Koenker (2017a,b).

This method is the nearest competitor to NEST as it estimates the joint prior distribution

of the mean and variance using nonparametric maximum likelihood estimation (NPMLE)

techniques (Kiefer and Wolfowitz 1956, Laird 1978). For the linear shrinkage methods, we

use code provided by Weinstein et al. (2018) while for NPMLE we rely on the R package

REBayes (Koenker and Gu 2017).

The aforementioned seven approaches are evaluated on six different simulation settings,

with the goal of assessing the relative performance of the competing estimators as the het-
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erogeneity in the variances σ2
i is varied while keeping the sample sizes mi fixed at m. The six

simulation settings can be categorized into four types: a setting where mean and variances

are independent; two settings where mean and variance are correlated; a sparse setting; and

two settings that represent departures from the Normal data-generating model. For each

setting we set n = 1,000 and compute the average squared error risk for each competing

estimator of µ across 50 Monte Carlo repetitions. Figures 1 to 6 plot the relative risk which

is the ratio of the average squared error risk for any competing estimator to that of NEST orc

so that a ratio bigger than 1 represents a poorer risk performance of the competing estimator

relative to the NEST oracle method.

The first setting, Figure 1, corresponds to the independent case. Here, for each i =

1, . . . , n, µi
i.i.d∼ 0.7 N(0, .1) + 0.3 N(±1, 3) and σ2

i
i.i.d∼ U(0.5, u) where we let u vary across

six levels, {0.5, 1, 1.5, 2, 2.5, 3}. The three plots in Figure 1 show the relative risks as u varies

for m = 10, 15 and 20 (left to right). We see that for m = 10, the competing methods split

into two levels of performance. The group with the lowest relative risks consists of NPMLE,

TF and NEST while the three linear shrinkage methods exhibit substantially higher relative

risks. Moreover, we also see that as heterogeneity increases with increasing u, the gap between

the two groups’ relative risks increases, indicating that NPMLE, TF and the proposed NEST

method are particularly useful for compound estimation of normal means when the variances

are unknown and heterogeneous, and the sample size for estimating those variances are

themselves small. As m increases, the performance of the three linear shrinkage methods

and TF improve which is expected as there are now more replicates per unit of study to

construct a relatively reliable estimate of the unknown variances. However, the performance

of NEST improves too and particularly at m = 20 (Figure 1 right), NPMLE exhibits a

slightly higher relative risk than NEST and TF.

The second setting, Figure 2, corresponds to the correlated case. The precisions τi =

1/σ2
i are generated independently from a gamma mixture, with an even chance of draw-

ing Γ(20, rate = 20) or Γ(20, rate = u) and given τi, the means µi are independently

N(±0.5/τi, 0.5
2). In this setting, the magnitude of the variances increase with u and the
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Figure 1: Comparison of relative risks when (µi, σ
2
i ) are independent. Here µi

i.i.d∼
0.7 N(0, .1) + 0.3 N(±1, 3) and σ2

i
i.i.d∼ U(0.5, u). Plots show m = 10, 15, 20 left to right.

means grow with the variances. Again, for the left plot m = 10, the same groups as in Figure

1 perform well although Grp Linear has a lower relative risk in comparison to the other

two linear shrinkage methods considered here while the relative risk of TF is slightly higher

than that of NPMLE and NEST. However, the pattern as m grows is more pronounced than

before, wherein NEST and TF maintain the lowest risk across m = 15, 20.
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Figure 2: Comparison of relative risks for correlated (µi, τi). Here τi
i.i.d∼ 0.5Γ(20, rate =

20) + 0.5Γ(20, rate = u) and µi|τi ind.∼ N(±0.5/τi, 0.5
2). Plots show m = 10, 15, 20 left to

right.

In the third setting, Figure 3, (µi, τi) continue to be correlated and have a conjugate

prior distribution. The precisions τi are drawn from Γ(20, rate = u) and conditional on
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τi, µi are independently N(0, 0.5/τi). Under this data generating scheme, the posterior

mean of µi is myi/(m + 2) which is independent of u. This is the reason that the relative

risks of the competing estimators in Figure 3 do not vary with the heterogeneity in the

variances. Compared to the first two settings, we see that the linear shrinkage estimators

have a relatively better performance. This is expected because in this setting the posterior

mean of µi is indeed a linear function of the sample mean yi. For m = 10 and 15, we notice

that the relative risk of NEST is marginally better than the competing estimators while at

m = 20 Grp Linear and NEST have similar risk performance.
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Figure 3: Comparison of relative risks when (µi, τi) have conjugate priors. Here µi|τi ind.∼
N(0, 0.5/τi) and τi

i.i.d∼ Γ(20, rate = u). Plots show m = 10, 15, 20 left to right.

The fourth setting, Figure 4, corresponds to the sparse case. The precisions τi are drawn

from a gamma mixture, with an even chance of drawing Γ(20, rate = 20) or Γ(20, rate = u),

but µi are only 30% likely to come from N(±0.5/τi, 1) and 70% likely from a point mass

at 0. We see similar patterns to those in Figures 1 and 2 at m = 10. For m = 15 and

20, we notice that the relative risks of the linear shrinkage methods are now higher than

their levels at m = 10. This is not surprising for in this setting, while the risk performance

of all methods have improved with larger sample sizes, NPMLE, TF and NEST exhibit a

bigger improvement in risk than those of Grp Linear, XKB.M and XKB.SG. Moreover in this

setting, NPMLE has a marginally better risk performance than NEST across m = 10, 15, 20.
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Figure 4: Comparison of relative risks when µ is sparse. Here τi
i.i.d∼ 0.5 Γ(20, rate =

20)+0.5 Γ(20, rate = u) and µi|τi ind.∼ 0.7δ(0) +0.3 N(±0.5/τi, 1). Plots show m = 10, 15, 20
left to right.

The fifth and sixth settings, Figures 5 and 6, correspond to the setting where the data

Yij |(µi, σ
2
i ) are not normally distributed. In Figure 5, Yij |(µi, σ

2
i ) are generated independently

from a uniform distribution between µi ±
√
3σi, σ

2
i are sampled independently from N(u, 1)

which is truncated below at 0.1, and µi|σi ind.∼ 0.8N(σ2
i /4, 0.25) + 0.2N(σ2

i , 1). For Figure
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Figure 5: Comparison of relative risk for non-normal data. Here Yij|µi, σi
i.i.d∼ U(µi −√

3σi, µi +
√
3σi), σ

2
i are sampled independently from N(u, 1) truncated below at 0.1 and

µi|σ2
i

ind.∼ 0.8 N(0.25σ2
i , 0.25) + 0.2 N(σ2

i , 1). Plots show m = 10, 15, 20 left to right.

6, Yij|(µi, σ
2
i ) are generated with additional non-normal noise N(µi, σ

2
i ) + Lap(0, 1) and

σ2
i

i.i.d∼ U(0.1, u) with µi|σi ind.∼ 0.8N(σ2
i /2, 0.5) + 0.2N(2σ2

i , 2). Across both these settings

the proposed NEST method demonstrates robustness to departures from the Normal model.
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Proposition 7 in Barp et al. (2019) guarantees that, in general, the influence function of

minimum KSD estimators, such as the NEST estimator, is bounded under data corruption

and the behavior of the NEST estimator in Settings 5 and 6 is potentially an example of

such a robustness property.
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Figure 6: Comparison of relative risk for non-normal data. Here Yij|µi, σi
i.i.d∼ N(µi, σ

2
i ) +

Lap(0, 1), σ2
i

i.i.d∼ U(0.1, u) and µi|σ2
i

ind.∼ 0.8 N(0.5σ2
i , 0.5) + 0.2 N(2σ2

i , 2). Plots show
m = 10, 15, 20 left to right.

Overall, the results of the preceding six simulation settings reveal that when the variances

are unknown, the NEST estimation framework enjoys a relatively better risk performance

than the linear shrinkage methods and Tweedie’s formula that rely on sample variances. For

larger sample sizes, we observe that NEST is marginally better than NPMLE. In Section

C of the supplementary material we consider additional simulation experiments wherein we

evaluate the risk performance of these competing estimators for (i) unequal sample sizes mi

(Section C.1), (ii) compound estimation for location mixture of Gaussians (Section C.2) and,

(iii) compound estimation in other two-parameter exponential families when the nuisance

parameter is known (Section C.3).

5.2 Compound Estimation of Ratios

In this section we demonstrate the use of the NEST estimation framework for compound

estimation of the n ratios θi =
√
miµi/σi which represent a popular financial metric for as-
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sessing mutual fund performance (see Section 6.2 for a related real data application involving

compound estimation of mutual fund Sharpe ratios.).
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Figure 7: Comparison of relative risk for estimating θ. Here σ2
i

i.i.d∼ U(0.1, u) and µi|σi ind.∼
N(±0.5σ2

i , 0.5
2). Plots show m = 10, 15, 20 left to right. 1396 x 498

We evaluate the performance of the same seven methods with n fixed at 1,000 andmi = m

for i = 1, . . . , n. The data Yij are generated independently from N(µi, σ
2
i ) and the variances

σ2
i are simulated as in Figure 6 while the means are independently drawn from a mixture

model with half chance N(−σ2
i /2, 0.5

2) and the other half N(σ2
i /2, 0.5

2). Figure 7 shows

the relative risk performance of the competing estimators of θ = (θ1, . . . , θn). We continue

to see that NEST has a lower relative risk than the linear shrinkage methods and TF that

use sample variances, while NPMLE dominates NEST for small values of u. As u increases

the heterogeneity in the data grows and we see that the relative risks of the linear shrinkage

methods and Tweedie’s Formula across all m first decrease and then increase. The shift in

the behavior of these estimators is related to the observation that as u increases, the centers

of the mixture model that generates µi, are on average, further away from one another.

This makes estimating the numerator of the ratio easier for all methods up until a point.

As heterogeneity increases further, the risks of these methods that use the sample standard

deviation in the denominator of θi are relatively worse than the risk of NEST and NPMLE.
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6 Real Data Analyses

6.1 Baseball Data

We analyze the monthly data on the number of “at bats” and “hits” for all U.S Major

League baseball players over the regular seasons from 2002 until 2011. In this analysis we

focus on both pitchers and non-pitchers using an approach similar to that of Gu and Koenker

(2017a). The data are available from the R package REBayes and have been aggregated into

half seasons to produce an unbalanced panel. It includes observations on 932 players who

have at least ten at bats in any half season and appear in no fewer than five half-seasons

(note that there are a total of 20 half-seasons that a player can appear in).

Following Brown (2008), let the transformed batting average Yij for player i(= 1, . . . , n)

at time j(= 1, . . . ,mi) be denoted by Yij = arcsin

(√

Hij + 0.25

Nij + 0.5

)

where Hij denotes the

number of “hits” and Nij denotes the number of “at bats” at time j for player i. We

assume that Yij ∼ N(µi, v
2
ij/τi) where µi = arcsin(

√
pi), pi being player i’s batting success

probability, and v2ij = 1/(4Nij). Here 1/τi are player specific scale parameters as described

in Gu and Koenker (2017a). Under this setup, the sufficient statistics are

µ̂i =





mi
∑

j=1

1/v2ij





−1
mi
∑

j=1

Yij/v
2
ij ∼ N(µi, v

2
i /τi) with v2i =



4

mi
∑

j=1

Nij





−1

,

S2
i =

1

mi − 1

mi
∑

j=1

(Yij − µ̂i)
2/v2ij with (mi − 1)S2

i τi ∼ X 2
mi−1.

In this analysis, the goal is to use the 2002-2011 data to predict the batting averages of

the players in 2012. Players are divided into three categories: all, non-pitchers, and pitchers.

We consider the following seven estimators of µi: two non-parametric maximum likelihood

based estimators, denoted NPMLE-Indep and NPMLE-Dep which assume, respectively, in-

dependent and dependent priors on (µi, 1/τi), the sufficient statistics µ̂ = (µ̂1, . . . , µ̂n) of

µ, the grand mean across all players in the 2011 season Ȳ 2011 = n−1
∑n

i=1 Yi,2011, the pro-

posed NEST estimator and its oracle counterpart (NEST orc), and the naive estimator
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Table 1: Performance of the competing estimators relative to the performance of the naive
estimator Y2011. Here R-TSE(δ) = TSE(δ)/TSE(Y2011) with similar definitions for R-NSE
and R-TSEp. The smallest two relative errors are bolded

NPMLE-Indep NPMLE-Dep µ̂ Ȳ 2011 NEST NEST orc

All
n for estimation: 932 R-TSE 0.463 0.469 0.352 1.958 0.349 0.348
n for prediction: 370 R-NSE 0.668 0.674 0.676 1.495 0.670 0.669

R-TSEp 0.582 0.591 0.501 1.783 0.496 0.495

Nonpitchers
n for estimation: 792 R-TSE 0.535 0.546 0.503 0.551 0.528 0.528
n for prediction: 325 R-NSE 0.656 0.661 0.679 0.973 0.672 0.672

R-TSEp 0.651 0.663 0.619 0.682 0.644 0.644

Pitchers
n for estimation: 140 R-TSE 0.659 0.655 0.629 0.804 0.628 0.624
n for prediction: 45 R-NSE 0.659 0.659 0.649 0.769 0.652 0.642

R-TSEp 0.124 0.117 0.133 0.337 0.144 0.128

that uses 2011 batting averages Y2011 = (Y1,2011, . . . , Yn,2011). To assess how well these

methods predict 2012 batting averages Y2012 = (Y1,2012, . . . , Yn,2012), we consider three cri-

teria for evaluating any estimate δi of µi: total squared error from Brown (2008) and de-

fined as TSE(δ) =
∑n

i=1

{

(Yi,2012 − δi)
2 − (4Ni,2012)

−1
}

, normalized squared error from

Gu and Koenker (2017a) and defined as NSE(δ) =
∑n

i=1

{

4Ni,2012(Yi,2012 − δi)
2
}

, and total

squared error on a probability scale from Jiang et al. (2010) which is defined as TSEp(p̂) =

∑n
i=1

{

(pi,2012 − p̂i)
2 − pi,2012(1 − pi,2012)(4Ni,2012)

−1
}

. Here p̂i = sin2(δi) and pi,2012 =

sin2(Yi,2012).

In Table 1, we report the performance of the competing estimators relative to the perfor-

mance of the naive estimator Y2011 wherein R-TSE(δ) = TSE(δ)/TSE(Y2011) with similar

definitions for R-NSE and R-TSEp. Thus, a smaller value of R-TSE, R-NSE or R-TSEp

indicates a relatively better prediction error. Across “All” and “Nonpitchers”, NEST exhibits

the best relative risk for two of the three performance metrics. It is interesting to note that

the sufficient statistics µ̂ are quite competitive in this example while NPMLE with indepen-

dent priors dominate the one with dependent priors across “All” and “Nonpitchers”. The

compound estimation problem for “Pitchers” is an example of a setting where n is relatively

small and NEST demonstrates a better risk performance than NPMLE for total squared

error and normalized squared error losses.
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6.2 Mutual Fund Sharpe Ratios

In this section we analyze a dataset on n1 = 5,000 monthly mutual fund returns spanning

12 months from January 2014 to December 2014. This data are sourced from the Wharton

research data services (Wharton School 1993). The goal in this analysis is to use Sharpe

ratios constructed using the data on the first m1 = 6 months, January 2014 - June 2014,

to predict the corresponding Sharpe ratios for the next 6 months. Formally, let Yij denote

the excess return of fund i(= 1, . . . , n1) in month j(= 1, . . . ,m1) over the return on the 3

month treasury yield. Denote Ȳi = m−1
1

∑m1

j=1 Yij, S
2
i = (m1 − 1)−1

∑m1

j=1(Yij − Ȳi)
2 and

δnaivei = Ȳi/
√

S2
i to be, respectively, the sample mean, the sample variance and the observed

Sharpe ratio of the monthly excess returns. Of the 5,000 funds available during these first 6

months, there are n2 = 4,958 funds that appear in the next 6 months, July 2014 - December

2014, and have at least 3 months of returns available during this period. For our prediction,

we consider these n2 funds to assess the performance of various estimators for predicting

θi = µi/σi where µi and σi are the sample mean and sample standard deviation of the excess

returns of the n2 funds during the next 6 months.

We consider the following estimators of θ = (θ1, . . . , θn): NEST, NEST orc, Tweedie’s

formula (TF), Grp Linear and XKB.SG from Section 5.1, as well as NPMLE-Indep, NPMLE-

Dep from Section 6.1. Additionally, we consider the SURE estimator XKB.G from Xie et al.

(2012) that, unlike XKB.SG, imposes a Normal prior on µ and shrinks towards the grand

mean. Note that for predicting θi, TF, Grp Linear, XKB.SG and XKB.G rely on the sample

variances S2
i . To evaluate the performance of these estimators for predicting θ, we consider

the following three criteria withmi,2 ∈ [3, 6]: Total Squared Error : TSE(δ) =
∑n2

i=1(θi−δi)
2;

weighted Squared Error : WSE(δ) =
∑n2

i=1 mi,2(θi − δi)
2; and weighted Absolute Error :

WAE(δ) =
∑n2

i=1mi,2|1 − δi/θi|. In Table 2, we present the performance of the competing

estimators relative to the performance of the naive estimator δnaive = (δnaivei : 1 ≤ i ≤ n) so

that a smaller value of R-TSE, R-WSE or R-WAE indicates a relatively better prediction

error. NPMLE-Indep and NPMLE-Dep revealed convergence issues on this data and so we

do not include them in Table 2. Along all performance measures, NEST has the smallest
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Table 2: Performance of the competing estimators relative to the performance of the naive
estimator δnaive. Here R-TSE(δ) = TSE(δ)/TSE(δnaive) with similar definitions for R-WSE
and R-WAE. The smallest two relative errors are bolded

n1 n2 Grp Linear XKB.G XKB.SG TF NEST NEST orc

R - TSE 5000 4958 0.896 0.931 0.922 0.997 0.687 0.687
R - WSE 5000 4958 0.893 0.930 0.920 0.997 0.685 0.685
R - WAE 5000 4958 1.067 0.974 0.983 1.002 0.785 0.783

relative risk among all competing estimators considered in this example. With respect to

the weighted Absolute Error, Grp Linear appears to be doing relatively worse in predicting

the small Sharpe ratios and exhibits an R-WAE bigger than 1. When compared against the

three linear shrinkage methods considered here and Tweedie’s formula, NEST demonstrates

an overall value in joint shrinkage estimation of the means µi and the variances σ2
i for

predicting θ.

References

Abramovich, F., Y. Benjamini, D. L. Donoho, and I. M. Johnstone (2006). Adapting to unknown

sparsity by controlling the false discovery rate. Ann. Statist. 34, 584–653.

Banerjee, T., Q. Liu, G. Mukherjee, and W. Sun (2020). A general framework for empirical bayes

estimation in discrete linear exponential family. arXiv preprint arXiv:1910.08997 (accepted in

Journal of Machine Learning Research).

Barp, A., F.-X. Briol, A. Duncan, M. Girolami, and L. Mackey (2019). Minimum stein discrepancy

estimators. In Advances in Neural Information Processing Systems, pp. 12964–12976.

Basu, P., T. T. Cai, K. Das, and W. Sun (2017). Weighted false discovery rate control in large-scale

multiple testing. Journal of the American Statistical Association 0 (ja), 0–0.

Benjamini, Y. and Y. Hochberg (1997). Multiple hypotheses testing with weights. Scandinavian

Journal of Statistics 24, 407–418.

Benjamini, Y. and D. Yekutieli (2011). False discovery rate–adjusted multiple confidence intervals for

selected parameters. Journal of the American Statistical Association 100 (469), 71–81.

Berger, J. O. (1976, January). Admissible minimax estimation of a multivariate normal mean with

arbitrary quadratic loss. Ann. Statist. 4 (1), 223–226.

33



Berk, R., L. Brown, A. Buja, K. Zhang, and L. Zhao (2013, 04). Valid post-selection inference. Ann.

Statist. 41 (2), 802–837.

Brown, L. D. (2008). In-season prediction of batting averages: A field test of empirical bayes and

bayes methodologies. The Annals of Applied Statistics , 113–152.

Brown, L. D. and E. Greenshtein (2009). Nonparametric empirical Bayes and compound decision

approaches to estimation of a high-dimensional vector of normal means. The Annals of Statis-

tics 37, 1685–1704.

Brown, L. D., E. Greenshtein, and Y. Ritov (2013). The poisson compound decision problem revisited.

Journal of the American Statistical Association 108 (502), 741–749.

Brown, S. J., W. Goetzmann, R. G. Ibbotson, and S. A. Ross (1992). Survivorship bias in performance

studies. The Review of Financial Studies 5 (4), 553–580.

Cai, J., X. Han, Y. Ritov, and L. Zhao (2021). Nonparametric empirical bayes estimation and testing

for sparse and heteroscedastic signals. arXiv preprint arXiv:2106.08881 .

Cai, T. T. and W. Sun (2009). Simultaneous testing of grouped hypotheses: Finding needles in

multiple haystacks. J. Amer. Statist. Assoc. 104, 1467–1481.

Castillo, I. and A. van der Vaart (2012, 08). Needles and straw in a haystack: Posterior concentration

for possibly sparse sequences. Ann. Statist. 40 (4), 2069–2101.

Chiaretti, S., X. Li, R. Gentleman, A. Vitale, M. Vignetti, F. Mandelli, J. Ritz, and R. Foa (2004,

4). Gene expression profile of adult t-cell acute lymphocytic leukemia identifies distinct subsets

of patients with different response to therapy and survival. Blood 103 (7), 2771–2778.

Chwialkowski, K., H. Strathmann, and A. Gretton (2016). A kernel test of goodness of fit. JMLR:

Workshop and Conference Proceedings.

Diaconis, P. and D. Ylvisaker (1979). Conjugate priors for exponential families. The Annals of

statistics , 269–281.

Donoho, D. L. and J. M. Jonhstone (1994). Ideal spatial adaptation by wavelet shrinkage.

Biometrika 81 (3), 425.

Dyson, F. (1926, 07). A Method for Correcting Series of Parallax Observations. Monthly Notices of

the Royal Astronomical Society 86 (9), 686–706.

Eddington, A. S. (1940, 03). The Correction of Statistics for Accidental Error. Monthly Notices of

the Royal Astronomical Society 100 (5), 354–361.

Efron, B. (2008). Microarrays, empirical Bayes and the two-groups model. Statist. Sci. 23, 1–22.

34



Efron, B. (2011). Tweedie’s formula and selection bias. Journal of the American Statistical Associa-

tion 106 (496), 1602–1614.

Efron, B. (2014). Two modeling strategies for empirical bayes estimation. Statistical science 29 (2),

285–301.

Efron, B. and C. N. Morris (1975). Data analysis using stein’s estimator and its generalizations.

Journal of the American Statistical Association 70 (350), 311–319.

Erickson, S. and C. Sabatti (2005). Empirical Bayes estimation of a sparse vector of gene expression

change. Statistical applications in genetics and molecular biology 4 (1), 1132.

Gu, J. and R. Koenker (2017a). Empirical bayesball remixed: Empirical bayes methods for longitu-

dinal data. Journal of Applied Econometrics 32 (3), 575–599.

Gu, J. and R. Koenker (2017b). Unobserved heterogeneity in income dynamics: An empirical bayes

perspective. Journal of Business & Economic Statistics 35 (1), 1–16.

He, L., S. K. Sarkar, and Z. Zhao (2015). Capturing the severity of type ii errors in high-dimensional

multiple testing. Journal of Multivariate Analysis 142, 106 – 116.

Henderson, N. C. and M. A. Newton (2016). Making the cut: improved ranking and selection for large-

scale inference. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 78,

1467–9868.

Ignatiadis, N. and S. Wager (2019). Covariate-powered empirical bayes estimation. In Advances in

Neural Information Processing Systems, pp. 9620–9632.

James, G. M., P. Radchenko, and B. Rava (2020). Irrational exuberance: Correcting bias in probability

estimates. Journal of the American Statistical Association, 1–14.

James, W. and C. Stein (1961). Estimation with quadratic loss. In Proceedings of the Fourth Berkeley

Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory

of Statistics, Berkeley, Calif., pp. 361–379. University of California Press.

Jiang, W. and C.-H. Zhang (2009, 08). General maximum likelihood empirical bayes estimation of

normal means. Ann. Statist. 37 (4), 1647–1684.

Jiang, W., C.-H. Zhang, et al. (2010). Empirical bayes in-season prediction of baseball batting

averages. In Borrowing Strength: Theory Powering Applications–A Festschrift for Lawrence D.

Brown, pp. 263–273. Institute of Mathematical Statistics.

Jing, B.-Y., Z. Li, G. Pan, and W. Zhou (2016). On sure-type double shrinkage estimation. Journal

of the American Statistical Association 111 (516), 1696–1704.

35



Johnstone, I. M. and B. W. Silverman (2004). Needles and straw in haystacks: empirical Bayes

estimates to possibly sparse sequences. Annals of Statistics 32 (4), 1594–1649.

Kiefer, J. and J. Wolfowitz (1956). Consistency of the maximum likelihood estimator in the presence

of infinitely many incidental parameters. The Annals of Mathematical Statistics , 887–906.

Koenker, R. and J. Gu (2017). Rebayes: Empirical bayes mixture methods in r. Journal of Statistical

Software 82 (8), 1–26.

Koenker, R. and I. Mizera (2014). Convex optimization, shape constraints, compound decisions, and

empirical Bayes rules. Journal of the American Statistical Association 109 (506), 674–685.

Kou, S. C. and J. J. Yang (2017). Optimal Shrinkage Estimation in Heteroscedastic Hierarchical

Linear Models, Chapter 25, pp. 249–284. Cham: Springer International Publishing.

Kwon, Y. and Z. Zhao (2018). On f-modelling based empirical bayes estimation of variances. arXiv

preprint arXiv:1806.06377 .

Laird, N. (1978). Nonparametric maximum likelihood estimation of a mixing distribution. Journal

of the American Statistical Association 73 (364), 805–811.

Laurent, B. and P. Massart (2000). Adaptive estimation of a quadratic functional by model selection.

Annals of Statistics , 1302–1338.

Lee, J. D., D. L. Sun, Y. Sun, and J. E. Taylor (2016, 06). Exact post-selection inference, with

application to the lasso. Ann. Statist. 44 (3), 907–927.

Liu, Q., J. D. Lee, and M. I. Jordan (2016). A kernelized stein discrepancy for goodness-of-fit tests.

In Proceedings of the International Conference on Machine Learning (ICML).

Liu, Q. and D. Wang (2016). Stein variational gradient descent: A general purpose bayesian inference

algorithm. In Advances In Neural Information Processing Systems, pp. 2378–2386.

Oates, C. J., M. Girolami, and N. Chopin (2017). Control functionals for monte carlo integration.

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79 (3), 695–718.

Robbins, H. (1956). An empirical Bayes approach to statistics. Proc. Third Berkeley Symp. on Math.

Statistic. and Prob. 1, 157–163.

Saha, S. and A. Guntuboyina (2020). On the nonparametric maximum likelihood estimator for gaus-

sian location mixture densities with application to gaussian denoising. The Annals of Statis-

tics 48 (2), 738–762.

Serfling, R. J. (2009). Approximation theorems of mathematical statistics, Volume 162. John Wiley

& Sons.

36



Soloff, J. A., A. Guntuboyina, and B. Sen (2021). Multivariate, heteroscedastic empirical bayes via

nonparametric maximum likelihood. arXiv preprint arXiv:2109.03466 .

Sun, W. and A. C. McLain (2012). Multiple testing of composite null hypotheses in heteroscedastic

models. Journal of the American Statistical Association 107 (498), 673–687.

Tan, Z. (2015). Improved minimax estimation of a multivariate normal mean under heteroscedasticity.

Bernoulli 21, 574–603.

Tusher, V. G., R. Tibshirani, and G. Chu (2001). Significance analysis of microarrays applied to the

ionizing radiation response. Proceedings of the National Academy of Sciences 98 (9), 5116–5121.

Weinstein, A., W. Fithian, and Y. Benjamini (2013). Selection adjusted confidence intervals with

more power to determine the sign. Journal of the American Statistical Association 108 (501),

165–176.

Weinstein, A., Z. Ma, L. D. Brown, and C.-H. Zhang (2018). Group-linear empirical bayes estimates

for a heteroscedastic normal mean. Journal of the American Statistical Association 0 (0), 1–13.

Wharton School (1993). Wharton research data services. https://wrds-web.wharton.upenn.edu/wrds/ .

Xie, X., S. Kou, and L. D. Brown (2012). Sure estimates for a heteroscedastic hierarchical model.

Journal of the American Statistical Association 107 (500), 1465–1479.

Yang, J., Q. Liu, V. Rao, and J. Neville (2018). Goodness-of-fit testing for discrete distributions via

stein discrepancy. In International Conference on Machine Learning, pp. 5561–5570.

Zhang, X. and A. Bhattacharya (2017). Empirical Bayes, sure, and sparse normal mean models.

Preprint.

37



Supplementary Material for “Nonparametric Empirical Bayes

Estimation On Heterogeneous Data”

In Section A we collect the proofs of the theoretical results in the paper. In Section

B we discuss extensions of our methodology to several well known members in the two-

parameter exponential family when the nuisance parameter is known. In Section C, we

provide additional numerical experiments for the following cases: unequal sample sizes mi

(Section C.1), compound estimation of Normal means with known variances (Section C.2)

and compound estimation for Gamma and Weibull mixtures (Section C.3).

A Proofs

A.1 Proof of Proposition 1

Recall from Definition 1 that

δTFi := δTF(yi, s
2
i ,mi) = yi +

s2i
mi

w1(yi, s
2
i ;mi),

where w1(y, s
2;m) :=

∂

∂y
log fm(y, s2). Since the n study units are independent, we will focus

on unit i.

We first note that under the squared error loss, δπi is the Bayes estimate of µi in Model

(2.1) and δTFi is an approximation to δπi . So, the Bayes risk of δπi is strictly less than the

Bayes risk of δTFi . This establishes the inequality in the left hand side of Proposition 1. To

prove the inequality in the right hand side of Proposition 1, we proceed as follows.
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Denote w1i := w1(yi, s
2
i ;mi). We have,

E(µi − δTFi )2 =
1

mi
E(1/τi) +

1

m2
i

E(S2
i w1i)

2 +
2

mi
E(Yi − µi)S

2
i w1i

= E(µi − Yi)
2 +

1

m2
i

E(S2
i w1i)

2 +
2

m2
i

E
S2
i

τi
w

′

1i, (A.1)

where w
′

1i := w
′

1(yi, s
2
i ;mi) and w

′

1(y, s
2;m) =

∂

∂y
w1(y, s

2;m). The equality in Equation

(A.1) follows from integration by parts and the fact that Yi|µi, τi ∼ N(µi, 1/(miτi)). Consider

the term T1 :=
1

m2
i

E(S2
i w1i)

2 +
2

m2
i

E

(S2
i

τi
w

′

1i

)

and note that

T1 =
1

m2
i

E

(

S2
i w1i

)2
+

1

m2
i

E

[

(S2
i )

2w
′

1i

]

+
2

m2
i

E

(S2
i

τi
w

′

1i

)

− 1

m2
i

E

[

(S2
i )

2w
′

1i

]

=
1

m2
i

E

[2S2
i

τi
− (S2

i )
2
]

w
′

1i. (A.2)

The equality in Equation (A.2) follows because, dropping subscript i,

E

[

(S2)2(w2
1 + w

′

1)
]

= E

[

(S2)2
f

′′

m,(1)(Y, S
2)

fm(Y, S2)

]

= 0,

where f
′′

m,(1)(y, s
2) is the second order partial derivative of fm(y, s2) with respect to y. Now,

we can re-write Equation (A.2) as

T1 =
1

m2
i

Eµi,τiEYi,S2
i |µi,τi

{[2S2
i

τi
− (S2

i )
2
]

w
′

1i

}

=
1

m2
i

Eµi,τi

(

T2

)

+
1

m2
i

Eµi,τi

(

T3

)

, (A.3)

where Eµ,τ is the expectation with respect to the joint distribution of (µ, τ), EY,S2|µ,τ is the

expectation with respect to the joint distribution of (Y, S2) conditional on (µ, τ) and

T2 = EYi,S2
i |µi,τi

{[2S2
i

τi
− (S2

i )
2
]

w
′

1i

∣

∣

∣S2
i <

2

τi

}

P

(

S2
i <

2

τi

∣

∣

∣τi

)

,

T3 = EYi,S2
i |µi,τi

{[2S2
i

τi
− (S2

i )
2
]

w
′

1i

∣

∣

∣
S2
i >

2

τi

}

P

(

S2
i >

2

τi

∣

∣

∣
τi

)

.

Denote p := P(S2
i > 2/τi | τi) and let ci be the partial derivative of w1(y, s

2;m) with respect

to y and evaluated at (yi, 2/τi,mi). Now, using equations (A.2) and (A.3) in Equation (A.1),

2



we get

E(µi − δTFi )2 = E(µi − Yi)
2 +

1

m2
i

Eµi,τi(T2 + T3). (A.4)

We will show that T2 + T3 < 0 which will be enough to prove the statement of Proposition

1 using Equation (A.4).

We first state a few results that are straightforward consequences of Model (2.1) and the

assumptions of Proposition 1. We have,

1. Under Model 2.1, (mi − 1)S2
i τi ∼ χ2

mi−1.

2. Additionally,

EYi,S2
i |µi,τi

[2S2
i

τi
− (S2

i )
2
]

=
mi − 3

(mi − 1)τ2i
> 0,

since mi > 3 in the statement of Proposition 1.

3. Since fm(y, s2) is a log-concave density, w
′

1i ≤ 0 and so T2 ≤ 0 while T3 ≥ 0.

Assume, without loss of generality, w
′

1i < 0. Since EYi,S2
i |µi,τi [2S

2
i /τi − (S2

i )
2] > 0, we have

(1− p)EYi,S2
i |µi,τi

[2S2
i

τi
− (S2

i )
2
∣

∣

∣S2
i <

2

τi

]

> −pEYi,S2
i |µi,τi

[2S2
i

τi
− (S2

i )
2
∣

∣

∣S2
i >

2

τi

]

> 0. (A.5)

Furthermore, as w
′

1i < 0 and w1i is a non-decreasing function of s2i ,

T2 ≤ (1− p)EYi,S2
i |µi,τi

{[2S2
i

τi
− (S2

i )
2
]

ci

∣

∣

∣S2
i <

2

τi

}

, (A.6)

Note that ci ≤ 0, and as defined earlier, it is the partial derivative of w1(y, s
2;m) with respect

to y and evaluated at (yi, 2/τi,mi). Therefore, using equations (A.5) and (A.6),

T2 ≤ (1− p)EYi,S2
i |µi,τi

{[2S2
i

τi
− (S2

i )
2
]

ci

∣

∣

∣
S2
i <

2

τi

}

< −pEYi,S2
i |µi,τi

{[2S2
i

τi
− (S2

i )
2
]

ci

∣

∣

∣
S2
i >

2

τi

}

< 0.(A.7)
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Now, we consider the term T3. Recall that

T3 = pEYi,S2
i |µi,τi

{[2S2
i

τi
− (S2

i )
2
]

w
′

1i

∣

∣

∣
S2
i >

2

τi

}

> 0.

Since w1i < 0 and w1i is a non-decreasing function of s2i ,

0 < T3 ≤ −pEYi,S2
i |µi,τi

{[2S2
i

τi
− (S2

i )
2
]

|ci|
∣

∣

∣
S2
i >

2

τi

}

. (A.8)

So, using equations (A.7) and (A.8)

T2 + T3 < −pEYi,S2
i |µi,τi

{[2S2
i

τi
− (S2

i )
2
](

ci + |ci|
)∣

∣

∣
S2
i >

2

τi

}

= 0,

Hence the desired result follows from the display above and Equation (A.4).

A.2 Proof of Proposition 2

Proposition 2 follows by recalling that under the hierarchical model of equation (2.1),

fmi
(yi, s

2
i |µi, τi) ∝ exp

{

−τi
2

[

miy
2
i + (mi − 1)s2i

]

+miτiµiyi −
mi

2
τiµ

2
i +

mi − 3

2
log s2i

}

.

Therefore from Bayes theorem,

fmi
(µi, τi|yi, s2i ) =

fmi
(yi, s

2
i |µi, τi)

fmi
(yi, s

2
i )

g(µi|τi)h(τi) ∝ exp
{

ηTi T (µi, τi)−A(ηi)
}

g(µi|τi)h(τi).

Here ηi = (miyi,−miy
2
i − (mi − 1)s2i ) := (η1i, η2i), T (µi, τi) = (τiµi, τi/2) and

A(ηi) = −0.5(mi − 3) log γ(η1i, η2i) + log fmi

{

m−1
i η1i, γ(η1i, η2i)

}

,

γ(η1i, η2i) =
−η2i −m−1

i η21i
mi − 1

,

with fm(y, s2) =
∫ ∫

fm(y, s2|µ, τ)gµ(µ|τ)hτ (τ)dµdτ being the marginal density function of

(Y, S2).
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Corollary 1 is a consequence of the properties of exponential family of distributions and

follows from proposition 2 under the squared error loss. From proposition 2 and dropping

subscript i, we have,

τ̂π := τ̂π(y, s2,m) = E(τ |y, s2,m) = 2
∂A(η)

∂η2
=

m− 3

(m− 1)s2
− 2

m− 1
w2(y, s

2;m).

Furthermore, with ζ = τµ,

ζ̂π := ζ̂π(y, s2,m) = E(ζ|y, s2,m) =
∂A(η)

∂η1
=

(m− 3)y

(m− 1)s2
+m−1w1(y, s

2;m)− 2yw2(y, s
2;m)

= yE(τ |y, s2,m) +m−1w1(y, s
2;m).

A.3 Proof of Proposition 3

We will first collect a few notations that will be used throughout the proof. Denote w1i :=

w1(yi, s
2
i ;mi), w2i := w2(yi, s

2
i ;mi) and γi := γ(yi, s

2
i ,mi). Let w

′

1(y, s
2;m) =

∂

∂y
w1(y, s

2;m)

and denote w
′

1i := w
′

1(yi, s
2
i ;mi). Similarly, ν(y, s2;m) =

1

fm(y, s2)

∂2

∂y2
fm(y, s2) and denote

νi := ν(yi, s
2
i ;mi). Finally, let γ

′

(y, s2,m) =
∂

∂y
γ(y, s2,m) and denote γ

′

i := γ
′

(yi, s
2
i ,mi).

The proof of Proposition 3 will use the following two lemmata.

Lemma 1 Suppose fm(y, s2) is a log concave density and Assumption 1(c) holds. Then

under Model (2.1) and mi > 7, we have,

E

{[2S2
i

τi

(

1− γi

)

−
(

S2
i

)2(

1− γ2i

)]

w
′

1i

}

> 0.

Lemma 2 Under Assumptions 1, 2 and Model (2.1), we have,

1

m2
i

E

[

S2
i

(

S2
i γ

2
i νi + 2

w1iγ
′

i

τi

)]

≤ 0.

Lemmata 1 and 2 are proved in Sections A.3.1 and A.3.2 respectively. We now prove Propo-
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sition 3. Recall from Definition 2 that the oracle NEST estimator for µi is

δ∗i = yi +
s2i
mi

γ(yi, s
2
i ,mi)w1(yi, s

2
i ,mi),

where

γ(yi, s
2
i ,mi) =

mi − 1

mi − 3− 2s2iw2(yi, s
2
i ;mi)

.

Since the n study units are independent, we will focus on unit i.

Under the squared error loss, δπi is the Bayes estimate of µi in Model (2.1) and δ∗i is

an approximation to δπi . So, the Bayes risk of δπi is strictly less than the Bayes risk of δ∗i .

This establishes the strict inequality on the left hand side of Proposition 3. Together with

Proposition 1, we only need to show r(δ∗,G) < r(δTF,G). First note that

r(δTF,G)− r(δ∗,G) = 1

m2
i

E

[

(S2
i )

2
(

1− γ2i

)

w2
1i

]

+
2

mi
E

[

(Yi − µi)S
2
i

(

1− γi

)

w1i

]

=
1

m2
i

E

[

(S2
i )

2
(

1− γ2i

)

w2
1i

]

+
2

m2
i

E

{S2
i

τi

[

(1− γi)w
′

1i − w1iγ
′

i

]}

. (A.9)

The equality in equation (A.9) follows from integration by parts and the fact that Yi ∼

N
(

µi,
1

miτi

)

. We can re-write Equation (A.9) as,

1

m2
i

E

[

(S2
i )

2
(

1− γ2i

)

w2
1i

]

+
1

m2
i

E

[

(S2
i )

2
(

1− γ2i

)

w
′

1i

]

− 2

m2
i

E

(S2
i

τi
w1iγ

′

i

)

+
1

m2
i

E

{[2S2
i

τi

(

1− γi

)

−
(

S2
i

)2(

1− γ2i

)]

w
′

1i

}

.

(A.10)

From Lemma 1, the last term in Equation (A.10) is positive. Let us consider the first three

terms in Equation (A.10) and denote them by,

T :=
1

m2
i

E

[

(S2
i )

2
(

1− γ2i

)

w2
1i

]

+
1

m2
i

E

[

(S2
i )

2
(

1− γ2i

)

w
′

1i

]

− 2

m2
i

E

(S2
i

τi
w1iγ

′

i

)

.

As shown in the proof of Proposition 1, E[(S2)2(w2
1 +w

′

1)] = 0. The above display involving
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the term T can be written as

T = − 1

m2
i

E

[

(S2
i )

2γ2i νi

]

− 2

m2
i

E

(S2
i

τi
w1iγ

′

i

)

. (A.11)

From Lemma 2, the term T in Equation (A.11) is non-negative. This establishes the inequal-

ity on the right hand side of r(δ∗,G) in Proposition 3 and completes the proof.

A.3.1 Proof of Lemma 1

Denote

Zi :=
2S2

i

τi
(1− γi)− (S2

i )
2(1− γ2i ) =

Qi

τi
,

where Qi = 2S2
i (1− γi)− (S2

i )
2(1− γ2i )τi. Since fm(y, s2) is a log-concave density, w

′

1i ≤ 0.

Suppose, without loss of generality, w
′

1i < 0. We will show that Qi < 0 which will be sufficient

to prove Ziw
′

1i > 0 and hence the statement of Lemma 1.

Dropping subscript i,

E(Q) = EY,S2

[

2S2(1− γ)− (S2)2(1− γ2)τ̂π
]

= EY,S2 [R(Y, S2)],

where τ̂π = E(τ |y, s2,m) from Equation (2.6) and EY,S2 is expectation with respect to the

joint marginal distribution of (Y, S2). Suppose, if possible, Qi ≥ 0 for all (τi, yi, s
2
i ) ∈

R
+ × R× R

+. We will show that E(Q) < 0 which will present a contradiction to Q ≥ 0 for

all (τ, y, s2) ∈ R
+ × R× R

+. Fix a y ∈ R and consider the following cases.

Case 1 – Suppose 0 < γ(y, s2,m) ≤ 1/(2c) where c ≥ 1 is a constant. Then, we have

s2τ̂π ≥ 2c and consequently s2(1 + γ)τ̂π > 2. So R(y, s2) < 0. Now, from Assumption

1(c), γ is a continuous and non-increasing function of s2. Therefore, there exists c1(y) ∈ R
+,

depending on y, such that s2 > c1(y) whenever 0 < γ(y, s2,m) ≤ 1/(2c). Thus, R(y, s2) < 0

for s2 > c1(y).

Case 2 – Next, suppose 1/2 < γ(y, s2,m) ≤ (m − 1)/(2m − 6). Then (2m − 6)/(m − 1) ≤

s2τ̂π < 2 and s2(1 + γ)τ̂π ≥ 3(m − 3)/(m − 1). Since m > 7, 3(m − 3)/(m − 1) > 2 and

7



so s2(1 + γ)τ̂π > 2. Thus R(y, s2) < 0 and using Assumption 1(c), R(y, s2) < 0 for c2(y) <

s2 ≤ c1(y), where c2(y) is such that s2 > c2(y) whenever γ(y, s
2,m) ≤ (m− 1)/(2m − 6).

The remaining four cases proceed in a similar manner as follows:

Case 3 – Suppose (m − 1)/(2m − 6) < γ(y, s2,m) ≤ (2m − 6)/(3m − 11). Then (3m −

11)/(2m − 6) ≤ s2τ̂π < (2m − 6)/(m − 1). Since (2m − 6)/(3m − 11) < 1 from m > 7, we

have s2(1+ γ)τ̂π > 2 and so R(y, s2) < 0 for c3(y) < s2 ≤ c2(y). Similarly, we can show that

R(y, s2) < 0 for c4(y) < s2 ≤ c3(y) where s2 ∈ (c4(y), c3(y)] whenever (2m− 6)/(3m− 11) <

γ(y, s2,m) ≤ 1.

Case 4 – Now suppose, 1 < γ(y, s2,m) ≤ (2m − 5)/(2m − 6). Then (2m − 6)/(2m − 5) ≤

s2τ̂π < 1 and s2(1+γ)τ̂π ∈ [(4m−12)/(2m−5), (4m−11)/(2m−6)). Note that here γ > 1

as opposed to γ ≤ 1 in the earlier cases. Therefore, if s2(1 + γ)τ̂π < 2 then R(y, s2) < 0 for

c5(y) < s2 ≤ c4(y). The upper limit of the interval for s2(1 + γ)τ̂π is (4m − 11)/(2m − 6)

which, for m > 7, is approximately 2 and converges to 2 for a moderately large m.

Case 5 – Similarly, if γ is in the intervals ((2m − 5)/(2m − 6), (m − 2)/(m − 3)], ((m −

2)/(m − 3), (m− 1)/(m − 3)] and ((m− 1)/(m − 3), (m+ 1)/(m − 3)] then we have γ ≥ 1

and s2(1 + γ)τ̂π < 2. Thus, on each of the corresponding intervals for s2, R(y, s2) < 0.

Case 6 – Denote r1 = 1 and rt = 2rt−1 + 3 for t = 2, 3, . . .. Suppose (m+ rt−1)/(m− 3) <

γ(y, s2,m) ≤ (m + rt)/(m − 3). Then for each of these intervals indexed by t ≥ 2, we have

γ ≥ 1, s2(1 + γ)τ̂π < 2 and so R(y, s2) < 0 on the corresponding intervals for s2.

So from these six cases, R(y, s2) < 0 for all s2 > 0 and consequently EY,S2[R(Y, S2)] <

0. Therefore, E(Q) < 0 which contradicts that Q ≥ 0 for all (τ, y, s2) ∈ R
+ × R × R

+.

Now suppose that for some Ω ⊂ R
+ × R × R

+, Q ≥ 0 whenever (τ, y, s2) ∈ Ω. However,

Assumption 1(c) and the aforementioned six cases imply that E(Q|Ω) < 0. Thus, Q < 0 for

all (τ, y, s2) ∈ R
+×R×R

+. So, we have Zw
′

1 > 0 and this completes the proof of Lemma 1.
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A.3.2 Proof of Lemma 2

Dropping subscript i, denote,

T := − 1

m2
E

[

(S2γ(Y, S2,m))2ν(Y, S2,m)
]

− 2

m2
E

[S2

τ
w1(Y, S

2,m)γ
′

(Y, S2,m)
]

.

We will show that T ≥ 0.

Let γ := γ(y, s2,m), ν := ν(y, s2,m), w1 := w1(y, s
2,m) and γ

′

:= γ
′

(y, s2,m). First note

that using standard integration by parts, we have

− 1

m2
E

[

(S2γ)2ν
]

=
2

m2
E

[

(S2)2γw1γ
′

]

.

So, we can write

T =
2

m2
E

{

S2w1γ
′

[

S2γ − 1

τ

]}

.

Furthermore, from Definition 2,

γ
′

=
2

m− 1
γ2s2w

′

2,

where w
′

2 :=
∂

∂y
w2(y, s

2,m). So, we have

T =
4

m2(m− 1)
E

{

(S2γ)2w1w
′

2

[

S2γ − 1

τ

]}

.

From Assumption 1(b), s2γ is a continuous and non-decreasing function of s2. So, there

exists a cτ , depending on τ , such that s2γ ≤ 1/τ whenever s2 ≤ cτ and s2γ > 1/τ whenever

s2 > cτ . Moreover, since EY,S2|µ,τ (S
2γ) ≤ 1/τ from Assumption 1(a), we have

[

1− P

(

S2 > cτ | τ
)]

EY,S2|µ,τ

[

S2γ − 1

τ

∣

∣

∣
S2 ≤ cτ

]

≤ −P

(

S2 > cτ | τ
)

EY,S2|µ,τ

[

S2γ − 1

τ

∣

∣

∣
S2 > cτ

]

≤ 0. (A.12)
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Let p := P(S2 > cτ | τ) and denote,

T1 := (1− p)EY,S2|µ,τ

{[

S2γ − 1

τ

]

(S2γ)2w1w
′

2

∣

∣

∣
S2 ≤ cτ

}

, and

T2 := pEY,S2|µ,τ

{[

S2γ − 1

τ

]

(S2γ)2w1w
′

2

∣

∣

∣S2 > cτ

}

.

Now, from Assumption 2(a), w1w
′

2 ≤ 0 and so T1 ≥ 0, T2 ≤ 0. Moreover, from Assumption

2(b) w1w
′

2 is continuous and non-decreasing in s2. Therefore, from Equation (A.12), T1+T2 ≥

0. This completes the proof of Lemma 2.

A.4 Proof of Theorem 1

Consider the sample criterion M̂λ,n(W̃) and population criterion M(W̃). We have

∣

∣

∣
M̂λ,n(W̃)−M(W̃)

∣

∣

∣
≤
∣

∣

∣

1

n2

n
∑

i=1

n
∑

j=1

κ[w̃(Xi), w̃(Xj)](Xi,Xj)I(i 6= j)−M(W̃)
∣

∣

∣
+

∣

∣

∣

1

n2

n
∑

i=1

κ[w̃(Xi), w̃(Xi)](Xi,Xi)
∣

∣

∣
+

λ(n)

n2
‖W̃‖2F

:= I1 + I2 + I3.

(A.13)

Define M̄n(W̃) = [n(n− 1)]−1
∑n

i=1

∑n
j=1 κ[w̃(Xi), w̃(Xj)](Xi,Xj)I(i 6= j). Then

I1 ≤ |M̄n(W̃)−M(W̃)|+ n−1|M̄n(W̃)|.

By assumption 3, n−1|M̄n(W̃)| is Op(n
−1). Now, note that M̄n(W̃) is an unbiased estimator of

M(W̃) and is a U-statistic with a symmetric kernel function κ[w̃(Xi), w̃(Xj)](Xi,Xj). From

assumption 3, κ[w̃(Xi), w̃(Xj)](Xi,Xj) has finite second moments. Moreover, from theo-

rem 4.1 of Liu et al. (2016), M̄n(W̃) is a non-degenerate U-statistic whenever f 6= f̃ . Thus,

from the CLT for U-statistics (Serfling (2009) section 5.5), |M̄n(W̃)−M(W̃)| is Op(n
−1/2).

10



For the terms I2 and I3 in equation (A.13), we have

I2 + I3 = {1 + λ(n)}
∣

∣

∣

1

n2

n
∑

i=1

κ[w̃(Xi), w̃(Xi)](Xi,Xi)
∣

∣

∣
.

From Assumption 3, I2 + I3 is Op({1 + λ(n)}/n). Theorem 1 is proved by combining these

results and using the condition λ(n)n−1/2 → 0.

A.5 Proof of Theorem 2

Denote λ(n) by λ and keep its dependence on n implicit for notational ease. According to

Proposition 3.3 of Liu et al. (2016), Assumption 4 implies that M(W̃) is a valid discrepancy

measure in the sense that M(W̃) > 0 if and only if f 6= f̃ . It follows that given a fixed ǫ > 0,

there exists a δ > 0 such that

P

{cn
n

∥

∥Ŵn(λ)−W0

∥

∥

2

F
≥ ǫ0

}

≤ P
[

cn

{

M(Ŵn(λ))−M(W0)
}

≥ δ
]

.

But the right hand side in the display above is upper bounded by the sum of three terms:

P[cn{M(Ŵn(λ))−M̂λ,n(Ŵn(λ))} ≥ δ/3], P[cn{M̂λ,n(Ŵn(λ))−M̂λ,n(W0)} ≥ δ/3] and P[cn{M̂λ,n(W0)−

M(W0)} ≥ δ/3]. From Theorem 1 the first term goes to zero as n → ∞ while the second

term is zero since M̂λ,n(Ŵn(λ)) ≤ M̂λ,n(W0).

Consider the third term P[cn{M̂λ,n(W0)−M(W0)} ≥ δ/3]. Here M(W0) = 0 and we can

write

∣

∣M̂λ,n(W0)
∣

∣ ≤
∣

∣M̂λ,n(W0)− M̃λ,n(W0)
∣

∣+
∣

∣M̃λ,n(W0)
∣

∣

:= T1 + T2,

where M̃λ,n(W0) = M̄n(W0) + λn−2‖W0‖2F and

M̄n(W0) = [n(n− 1)]−1
n
∑

i=1

n
∑

j=1

κ[w(Xi),w(Xj)](Xi,Xj)I(i 6= j).

11



So, we have T1 ≤
1

n

∣

∣M̄n(W0)
∣

∣+
1

n2

∣

∣

∣

∑n
i=1 κ[w(Xi),w(Xi)](Xi,Xi)

∣

∣

∣, and T2 ≤
∣

∣M̄n(W0)
∣

∣+

λn−2‖W0‖2F . Therefore,

∣

∣M̂λ,n(W0)
∣

∣ ≤ T1 + T2 ≤ (1 + n−1)
∣

∣M̄n(W0)
∣

∣+
1 + λ

n2

∣

∣

∣

n
∑

i=1

κ[w(Xi),w(Xi)](Xi,Xi)
∣

∣

∣.(A.14)

From Theorem 4.1 of Liu et al. (2016), M̄n(W̃) is a degenerate U-statistic when W̃ = W0.

From Assumption 3 and the CLT for U-statistics [cf. Section 5.5.2 of Serfling (2009)], M̄n(W0)

is Op(n
−1). Also, from Assumption 3, the second term in equation (A.14) above is Op((1 +

λ)/n). Finally, using these results in equation (A.14) along with the condition that λn−1/2 →

0 as n → ∞, we conclude that the third term

P[cn{M̂λ,n(W0)−M(W0)} ≥ δ/3] → 0

as n → ∞. The desired result thus follows.

A.6 Proof of Theorem 3 and Corollary 2

We first state two lemmata that are needed for proving Theorem 3. Denote c0, c1, . . . some

generic positive constants which may vary in different statements.

Lemma 3 If Assumption 5 holds, then with probability tending to 1, |µ| ≤ C1 log n and

C2/ log n ≤ τ ≤ C3 log n for some positive constants C1, C2 and C3.

Lemma 4 Consider Model (2.1). Suppose Assumption 5 holds. Then with probability tend-

ing to 1,

|w1,i| ≤ c0(log n)
2 and E(τi|yi, s2i ) ≥

c1
log n

.

Lemmata 3 and 4 are proved in Sections A.6.1 and A.6.2, respectively. We now prove

Theorem 3.

12



To establish the first part of Theorem 3, note that

1

n
‖δds(λ)− δ∗‖22 =

1

nm2

n
∑

i=1

∣

∣

∣

w1,i

τ̂πi
−

ŵi
1,λ

τdsi (λ)

∣

∣

∣

2

≤ 2

nm2

n
∑

i=1

1

[τdsi (λ)]2

∣

∣

∣
w1,i − ŵi

1,λ

∣

∣

∣

2
+

2

nm2

n
∑

i=1

∣

∣

∣
w1,i

∣

∣

∣

2 ∣
∣

∣

1

τdsi (λ)
− 1

τ̂πi

∣

∣

∣

2

:= T1 + T2.

Consider the first term T1. From the discussion in Section 3.2, there is a positive constant

c0 such that τdsi (λ) > c0 > 0 for all i = 1, . . . , n. It follows that for some constant c1 > 0

depending on the fixed m,

T1 ≤ c1
n

∥

∥

∥
w1 − ŵ1,λ

∥

∥

∥

2

2
≤ c1

n

∥

∥

∥
W0 − Ŵn(λ)

∥

∥

∥

2

F
, (A.15)

where ŵ1,λ = (ŵ1
1,λ, . . . , ŵ

n
1,λ) and w1 = (w1,1, . . . , w1,n). From Theorem 2 the last term on

the right hand side of the inequality in equation (A.15) is Op(n
−1/2).

Next consider the second term T2. We have

T2 ≤
c2
n

n
∑

i=1

∣

∣

∣

w1,i

τ̂πi

∣

∣

∣

2
|w2,i − ŵi

2,λ|2 (A.16)

We will use Lemma 4 to bound the terms |w1,i/τ̂
π
i | in equation (A.16). First note that Model

(2.1), Assumption 5 and Lemma 3 imply that with probability tending to 1, |Yi| ≤ c0 log n

and

(m− 1)n−1 ≤ (m− 1)S2
i τi ≤ (m− 1) + 2

√

(m− 1) log n+ 2 log n

[cf. Lemma 1 of Laurent and Massart (2000)]. So conditional on these events, we have, from

Lemma 4, |w1,i/τ̂
π
i | ≤ c3 log

3 n. Thus,

T2 ≤ c4 log
6 n

n

n
∑

i=1

∣

∣

∣w2,i − ŵi
2,λ

∣

∣

∣

2
,

which is Op(log
6 n/

√
n) from Theorem 2. Thus n−1‖δds(λ)− δ∗‖22 is Op(log

6 n/
√
n).
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Now we will prove the second part of Theorem 3. Observe that |ln(µ, δ∗)− ln(µ, δ
ds(λ))|

equals

1

n

∣

∣

∣

∥

∥µ− δ∗
∥

∥

2
−
∥

∥µ− δds(λ)
∥

∥

2

∣

∣

∣

∣

∣

∣

∥

∥µ− δ∗
∥

∥

2
+
∥

∥µ− δds(λ)
∥

∥

2

∣

∣

∣

and Triangle inequality implies

1√
n

∣

∣

∣

∥

∥µ− δ∗
∥

∥

2
−
∥

∥µ− δds(λ)
∥

∥

2

∣

∣

∣ ≤ 1√
n

∥

∥δds(λ)− δ∗
∥

∥

2
. (A.17)

The quantity on the right hand side of the inequality in equation (A.17) is Op(log
3 n/n1/4)

from the first part of theorem 3. Thus, it follows from equation (A.17) that

√

ln(µ, δds(λ)) ≤
√

ln(µ, δ∗) +Op(log
3 n/n1/4), and

∣

∣ln(µ, δ
∗)− ln(µ, δ

ds(λ))
∣

∣ ≤ 4
√

ln(µ, δ∗)
∣

∣

√

ln(µ, δ∗)−
√

ln(µ, δds(λ))
∣

∣

{

1 + op(1)
}

.(A.18)

Now Assumption 5, together with Lemmata 3 and 4 imply ln(µ, δ
∗) is Op(log

6 n). Thus,

from equation (A.17) and the first part of Theorem 3, we have the desired result.

Corollary 2 is a consequence of Theorem 2 of Diaconis and Ylvisaker (1979). When

applied to the hierarchical model of equation (2.1) with conjugate priors it establishes that

the posterior expectation of µi is a linear combination of the prior mean and yi. The weights

in this linear combination are proportional to m and the prior sample size m0. For instance,

if we consider the following normal conjugate model,

Yij | µi, τi
i.i.d∼ N(µi, 1/τi), µi |τi ind∼ N(µ0, 1/τi), τi

i.i.d∼ Γ(α, β), (A.19)

then under model (A.19) standard calculations give δπi = (µ0+myi)/(m+1) where µ0 is the

prior mean and m0 = 1 is the prior sample size. Moreover, under model (A.19) we also have

log f(yi, s
2
i ) = c0 +

m− 3

2
log s2i − (α+m/2) log

{

β−1 +0.5(m− 1)s2i +0.5
m

m + 1
(yi − µ0)

2
}

,

14



where c0 is a constant independent of (yi, s
2
i ). From the above display,

w1(yi, s
2
i ) = − α+m/2

β−1 + 0.5(m− 1)s2i + 0.5m/(m + 1)(yi − µ0)2

w2(yi, s
2
i ) =

(m− 3)

2s2i
− 0.5(α +m/2)(m− 1)

β−1 + 0.5(m − 1)s2i + 0.5m/(m + 1)(yi − µ0)2
.

Substituting these expressions for w1(yi, s
2
i ), w2(yi, s

2
i ) in equation (4.17) give δ∗i = δπi . This

suffices to prove the statement of Corollary 2.

A.6.1 Proof of Lemma 3

The proof of Lemma 3 follows directly from Assumption 5 and Markov’s inequality. For

example, fix a ν > 0 and note that, for r = ǫ−ν
2 > 1,

P

(

τ ≤ ǫ1+ν
2

log n

)

≤
EH

{

exp(ǫ2/τ)
}

nr
.

A.6.2 Proof of Lemma 4

Recall that f(yi, s
2
i ) =

∫

R+

∫

R
f1(yi|µ, τ)f2(s2i |τ)g(µ|τ)h(τ)dµdτ, where g(·|τ) and h(·) are,

respectively, the density functions associated with the distribution functions Gµ(·|τ) and

Hτ (·) in equation (2.1), f1 is the density of a Gaussian random variable with mean µ and

variance 1/(mτ) and f2 is the density of S2 where (m− 1)S2τ ∼ X 2
m−1. We will denote the

partial derivative of f(y, s2) with respect to y by f ′
(1)(y, s

2). From Model (2.1), |f ′
(1)(yi, s

2
i )| ≤

T1 + T2, where

T1 = m|Yi|
∫

R+

∫

R

τf1(yi|µ, τ)f2(s2i |τ)g(µ|τ)h(τ)dµdτ (A.20)

T2 = m

∫

R+

∫

R

|µ|τf1(yi|µ, τ)f2(s2i |τ)g(µ|τ)h(τ)dµdτ.
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Consider the term T1 in equation (A.20) above. Fix ν3 > 0 such that ǫ−ν3
3 > 4m in Lemma

3. With C3 = ǫ−1−ν3
3 we have,

T1 ≤ m|Yi|f(yi, s2i )C3 log n+m|Yi|
∫

R+

∫

R

τI(τ ≥ C3 log n)f1(yi|µ, τ)f2(s2i |τ)g(µ|τ)h(τ)dµdτ

≤ m|Yi|f(yi, s2i )C3 log n+mc0|Yi|EH

{

τ5/2I(τ ≥ C3 log n)
}

(A.21)

≤ m|Yi|f(yi, s2i )C3 log n+mc1|Yi|
{

P

(

τ ≥ C3 log n
)}1/2

(A.22)

≤ m|Yi|f(yi, s2i )C3 log n+mc2|Yi|n−2m (A.23)

In equation (A.21) we have used the fact that f1(yi|µ, τ) ≤
√

τ/(2π) and f2(s
2
i |τ) ≤ c2τ

while for equations (A.22), (A.23) we use the Cauchy Schwartz inequality, Assumption 3 and

Lemma 3.

Now, consider the term T2 in equation (A.20). With C3 = ǫ−1−ν3
3 and C1 = ǫ−1−ν1

1 , where

ν1 > 0 is such that ǫ−ν1
1 > 4m in Lemma 3, T2 term can be expressed as the sum of the

following four integrals:

I1 = m

∫

R+

∫

R

|µ|I(|µ| ≤ C1 log n)τI(τ ≤ C3 log n)f1(yi|µ, τ)f2(s2i |τ)g(µ|τ)h(τ)dµdτ(A.24)

I2 = m

∫

R+

∫

R

|µ|I(|µ| ≥ C1 log n)τI(τ ≤ C3 log n)f1(yi|µ, τ)f2(s2i |τ)g(µ|τ)h(τ)dµdτ(A.25)

I3 = m

∫

R+

∫

R

|µ|I(|µ| ≤ C1 log n)τI(τ ≥ C3 log n)f1(yi|µ, τ)f2(s2i |τ)g(µ|τ)h(τ)dµdτ

I4 = m

∫

R+

∫

R

|µ|I(|µ| ≥ C1 log n)τI(τ ≥ C3 log n)f1(yi|µ, τ)f2(s2i |τ)g(µ|τ)h(τ)dµdτ

We will bound I1 and I2 and the other two integrals can be bounded using similar arguments.

For I1 in equation (A.24), note that I1 ≤ c0 log
2 nf(yi, s

2
i ) and for I2 in equation (A.25),

I2 ≤ c1(log
5/2 n)

{

P

(

|µ| ≥ C1 log n
)}1/2

≤ c2(log
5/2 n)n−2m (A.26)

In equation (A.26) we have used f1(yi|µ, τ) ≤
√

τ/(2π), f2(s
2
i |τ) ≤ c2τ , the Cauchy Schwartz

inequality, Assumption 3 and Lemma 3. Similarly, we can show that I3 ≤ c0 log n/n
2m and
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I4 ≤ c1/n
4m. Finally, putting the upper bounds for Ii, i = 1, · · · , 4, together, we get,

T2 ≤ c0 log
2 nf(yi, s

2
i ) + c1

log5/2 n

n2m
(A.27)

From equations (A.23) and (A.27) we have

|w1(Yi, S
2
i )| ≤ c0|Yi| log n+ c1 log

2 n+ c2
|Yi|+ log5/2 n

f(yi, s2i )n
2m

.

Moreover, noting that Model (2.1) and Lemma 3 imply that |Yi| ≤ c3 log n with high proba-

bility, we have, conditional on this event,

|w1(Yi, S
2
i )| ≤ c4 log

2 n+ c5
log n+ log5/2 n

f(yi, s2i )n
2m

. (A.28)

We will now analyze the behavior of f(yi, s
2
i ) that appears in the display above. Gaussian

concentration implies that with high probability {(Yi−µi)
2mτi} ≤ 2 log n and so, conditional

on this event,

f1(yi|µ, τ) ≥ c0

√
τ

n
. (A.29)

Moreover, using the Chi-square concentration in Lemma 1 of Laurent and Massart (2000),

(m− 1)S2
i τi ≤ (m− 1) + 2

√

(m− 1) log n+ 2 log n and S2
i τi ≥ n−1 with high probability. It

follows that

f2(s
2
i |τ) ≥ c1τ

an

n(m+1)/2 log n
, (A.30)

conditional on this event, where an = exp{−
√

(m− 1) log n}. Using equations (A.29) and

(A.30), we have

f(yi, s
2
i ) ≥ c2

an
n(m+3)/2 log n

∫

R+

τ3/2h(τ)dτ. (A.31)

Now, use Assumption 5 and Lemma 3 on the quantity
∫

R+ τ3/2h(τ)dτ in equation (A.31) to

conclude that
∫

R+

τ3/2h(τ)dτ ≥ c3

log3/2 n
P

(

τ ≥ C2/ log n
)

. (A.32)
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So, with equations (A.32), (A.31) and Lemma 3, we have with high probability,

f(yi, s
2
i ) ≥ c4

an

n(m+3)/2 log5/2 n
. (A.33)

The first statement of Lemma 4 thus follows from equations (A.33) and (A.28).

We will now prove the second statement of Lemma 4. Fix ν2 > 0 such that ǫ−ν2
2 > 2m in

Lemma 3 and let C2 = ǫ1+ν2
2 . First note that from Assumption 5, P(τ ≤ C2/ log n) ≤ c0/n

2m.

Now, Markov’s inequality implies,

E(τ |yi, s2i ) ≥
C2

log n

{

1− P(τ ≤ C2/ log n|yi, s2i )
}

.

Moreover,

P(τ ≤ C2/ log n|yi, s2i ) = {f(yi, s2i )}−1

∫ C2/ logn

0
h(τ)

{

∫

R

g(µ|τ)f1(yi|µ, τ)f2(s2i |τ)dµ
}

dτ.

Now f1(yi|µ, τ) ≤
√

τ/(2π) and f2(s
2
i |τ) ≤ c1τ where c1 > 0 is a constant. So for some

positive constant c2,

P(τ ≤ C2/ log n|yi, s2i ) ≤ c2
f(yi, s

2
i )

∫ C2/ logn

0
τ3/2h(τ)

{

∫

R

g(µ|τ)dµ
}

dτ

≤ c3

f(yi, s2i ) log
3/2 n

∫ C2/ logn

0
h(τ)dτ =

c3

f(yi, s2i ) log
3/2 n

P(τ ≤ C2/ log n).

Thus, from the above display, Assumption 5 and Lemma 3,

E(τ |yi, s2i ) ≥
C2

log n

{

1− c3
n−2m

f(yi, s
2
i ) log

3/2 n

}

.

Finally, equation (A.33) and the above display prove the second statement of Lemma 4.
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B Extensions

This section considers the extension of our methodology to several well known members in

the two-parameter exponential family. We will focus on several examples where the nuisance

parameter is known. Our proposed estimation framework is motivated by the double shrink-

age idea, but the approach nonetheless handles the case with known nuisance parameters.

We discuss four examples, in each of which we derive the Bayes estimator of the natural

parameter similar to that in Corollary 1. The Bayes estimator in these examples relies on

the unknown score function (of the marginal density of the sufficient statistic), which can

be efficiently estimated using the ideas in Section 3. The numerical performance of the new

estimators considered in this section is investigated in Section C.3.

Example B.1 (Location mixture of Gaussians) Consider the following hierarchical model

Yi | µi, τi
ind.∼ N(µi, 1/τi), µi

i.i.d∼ Gµ(·), for i = 1, . . . , n, (B.34)

where τi are known and Gµ(·) is an unspecified prior. Equation (B.34) represents the het-

eroscedastic normal means problem with known variances 1/τi [see for example Weinstein et al.

(2018)]. In this setting, the sufficient statistic for µi is Yi and the Bayes estimator of µi is

given by

µπ
i := E(µi|yi, τi) = yi +

1

τi

∂

∂yi
log f(yi|τi),

where f(·|τi) is the pdf of the distribution of Yi given τi marginalizing out µi. From Section

3 and with mi = 1, xi = (yi, τi), the NEST estimate of µi is given by δnesti (λ) = yi +
1

τi
ŵi
1,λ.

Example B.2 (Scale mixture of Gamma distributions) Consider the following model

Yij | αi, 1/βi
i.i.d∼ Γ(αi, 1/βi), 1/βi

i.i.d∼ G(·), (B.35)

where the shape parameters αi are known and G(·) is an unspecified prior distribution on scale

parameters 1/βi. Here Ti =
∑m

j=1 Yij is a sufficient statistic and Ti|αi, βi
ind.∼ Γ(mαi, 1/βi).
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The posterior distribution of 1/βi belongs to a one-parameter exponential family with density

f(1/βi|Ti, αi) ∝ exp
{

−Tiβi + (mαi − 1) log Ti − log f(Ti|αi)
}

, (B.36)

where f(·|αi) is the pdf of the distribution of Ti given αi (marginalizing out 1/βi). From

Equation (B.36), the Bayes estimator of βi is given by

βπ
i := E(βi|Ti, αi) =

mαi − 1

Ti
− ∂

∂Ti
log f(Ti|αi).

With xi = (Ti, αi), the NEST estimate of βi is given by δnesti (λ) =
mαi − 1

Ti
− ŵi

1,λ.

Example B.3 (Shape mixture of Gamma distributions) We consider the following model:

Yij | αi, 1/βi
i.i.d∼ Γ(αi, 1/βi), αi

i.i.d∼ G(·), (B.37)

where the scale parameters 1/βi are known and G(·) is an unspecified prior distribution on

the shape parameters αi. Let Yi =
∑m

j=1 Yij . Then Yi|αi, βi
ind.∼ Γ(mαi, 1/βi) and Ti = log Yi

is a sufficient statistic. Moreover, the posterior distribution of αi belongs to a one-parameter

exponential family with density

f(αi|Ti, 1/βi) ∝ exp
{

(mαi)Ti − βiexp (Ti)− log f(Ti|1/βi)
}

, (B.38)

where f(·|1/βi) is the density of the distribution of Ti given 1/βi marginalizing out αi. From

Equation (B.38), the Bayes estimator of αi is given by

απ
i := E(αi|Ti, 1/βi) =

βi exp (Ti)

m
+

1

m

∂

∂Ti
log f(Ti|1/βi).

With xi = (Ti, 1/βi), the NEST estimate of αi is δnesti (λ) =
βi exp (Ti)

m
+

1

m
ŵi
1,λ.
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Example B.4 (Scale mixture of Weibulls) We consider the following model:

Yij | ki, βi i.i.d∼ Weibull(ki, βi), βi
i.i.d∼ G(·). (B.39)

We have f(y| k, β) = βkyk−1 exp(−βyk). In Equation (B.39) the shape parameters ki are

known, G(·) is an unspecified prior distribution on the scale parameters βi, Ti =
∑m

j=1{Yij}ki

is a sufficient statistic, and Ti|ki, 1/βi ind.∼ Γ(m, 1/βi). From Example 2, the Bayes estimator

of βi is

βπ
i := E(βi|Ti, ki) =

m− 1

Ti
+

∂

∂Ti
log f(Ti|ki).

With xi = (Ti, ki), the NEST estimate of βi is given by δnesti (λ) =
m− 1

Ti
− ŵi

1,λ.

The preceding examples present a setting with known nuisance parameter. When both

parameters are unknown, extensions of our estimation framework to an arbitrary member of

the two-parameter exponential family is difficult. The main reason is that in the Gaussian

case the sufficient statistics are independent and their marginal distributions are known.

However, for other distributions such as the Gamma and Beta, the joint distribution of

the two sufficient statistics is generally unknown. This impedes a full generalization of our

approach. We anticipate that an iterative scheme that conducts shrinkage estimation on

the primary and nuisance coordinates in turn may be developed by combining the ideas in

Examples 2 and 3 above. We do not pursue those extensions in this article.

C Additional Numerical Experiments

C.1 Numerical Experiments with unequal sample sizes mi

In this section, we present the risk performance of the seven competing approaches of sections

5.1 and 5.2 when the sample sizes mi are different across the n = 1000 units of study.

We continue to use the simulation settings of sections 5.1 and 5.2, and only change how

m = (m1, . . . ,mn) are generated in these settings. Figures 8 to 10 present the relative
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Figure 8: Left to Right: Simulation settings 1, 2 and 3. Here m is a fixed vector of size n
with elements sampled randomly from (10, 11, . . . , 20) with replacement.

risks of the competing estimators across the seven simulations settings of sections 5.1 and

5.2. Here m is generated as a fixed vector of size n with elements sampled randomly from

(10, 11, . . . , 20) with replacement. For setting 1, figure 8 left, we note that NPMLE dominates

NEST as u increases while both NEST and TF exhibit a better risk performance than the

three linear shrinkage estimators. Under setting 2, figure 8 center, NEST dominates all other

competing estimators considered here while for setting 3 (figure 8 right), which represents

the conjugate case, the NEST and NPMLE have the best risk performance. Settings 5 and 6

(figure 9 center and right) from section 5.1 represent scenarios wherein the data Yij|(µi, σ
2
i )

are not normally distributed. Under both these settings, NEST provides an overall better risk

performance than the linear shrinkage estimators as the heterogeneity in the data increases

with u while NPMLE dominates NEST in setting 6 (figure 9 right). Setting 7 (figure 10) is

the ratio estimation scenario considered in section 5.2 and we see that NEST has a relatively

better risk performance than the linear shrinkage estimators and Tweedie’s formula while

NPMLE dominates NEST for relatively smaller values of u.

C.2 Compound Estimation of Normal Means - known variances

We focus on the hierarchical Model of equation (2.1) with known variances and compare

the following six approaches for estimating µ: the NEST oracle method, which estimates λ
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Figure 9: Left to Right: Simulation settings 4, 5 and 6 (from section 5.2). In each setting
m is a fixed vector of size n with elements sampled randomly from (10, 11, . . . , 20) with
replacement.
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Figure 10: Simulation setting 7 from section 5.2. Here m is a fixed vector of size n with
elements sampled randomly from (10, 11, . . . , 20) with replacement.

by minimizing the true loss (NEST orc), and the proposed NEST method, where λ is cho-

sen using modified cross-validation, the g-modelling approach of Gu and Koenker (2017a,b)

(NPMLE), group linear estimator (Grp linear) of Weinstein et al. (2018), the semi-parametric

monotonically constrained SURE estimator that shrinks towards the grand mean (XKB.SG)

from Xie et al. (2012) and from the same paper, the parametric SURE estimator that shrinks

towards a general data driven location (XKB.M).

The aforementioned six approaches are evaluated on four different simulation settings,

with the goal of assessing the relative performance of the competing estimators as the het-

erogeneity in the variances σ2
i is varied while keeping n fixed at 1,000. For each setting
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we compute the average squared error risk for each competing estimator of µ across 50

Monte Carlo repetitions. Figures 11 and 12 plot the relative risk which is the ratio of the

average squared error risk for any competing estimator to that of NEST orc so that a ra-

tio bigger than 1 represents a poorer risk performance of the competing estimator relative

to the NEST oracle method. The first setting, panel (a) of Figure 11, corresponds to the
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(a) Setting 1: µi

i.i.d∼ 0.7 N(0, .1) + 0.3 N(±1, 3)

and σ2
i

i.i.d∼ U(0.5, u).
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(b) Setting 2: µi can take values 0 or 3 with equal

probability and σ2
i

i.i.d∼ U(0.5, u).

Figure 11: Comparison of relative risks under simulation settings 1 and 2.

scenario where the mean and the variances are independent. Here, for each i = 1, . . . , n,

µi
i.i.d∼ 0.7 N(0, .1) + 0.3 N(±1, 3) and σ2

i
i.i.d∼ U(0.5, u) where we let u vary across six levels,

{0.5, 1, 1.5, 2, 2.5, 3}. This is the same setting 1 of Figure 1 in Section 5.1 but with known

variances. From panel (a) of Figure 11, we see that as heterogeneity increases with increas-

ing u, the gap between the linear shrinkage methods and NEST decreases. NPMLE, on the

other hand, demonstrates a higher relative risk than NEST except at u = 1.5. The second

setting, panel (b) of Figure 11, is another example of the scenario where the mean and the

variances are independent. Here, for each i = 1, . . . , n, µi can take the values 0 or 3 with

equal probability and σ2
i

i.i.d∼ U(0.5, u) with u ∈ {0.5, 1, 1.5, 2, 2.5, 3}. Under this setting, we

expect NPMLE to perform substantially better as the true prior distribution on the means is

discrete. Moreover, from panel (b) of Figure 11 we note that both NEST and NPMLE dom-

inate the linear shrinkage methods. The third setting, panel (a) of Figure 12, corresponds

to the sparse case. The variances σ2
i are drawn from the same uniform distribution as in
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(b) Setting 4:

τi
ind.∼ 0.5Γ(20, rate = 20) + 0.5Γ(20, rate = u)

and µi|τi ind.∼ N(±0.5/τi, 0.5
2).

Figure 12: Comparison of relative risks under simulation settings 3 and 4.

Figure 11, but µi are only 30% likely to come from N(3, 1) and 70% likely from a point mass

at 0. We continue to see a similar pattern in the relative risks of the competing estimators

wherein both NPMLE and NEST are better than the linear shrinkage estimators considered

here. The fourth setting, panel (b) of Figure 12, corresponds to the correlated case of Figure

2 in Section 5.1 with known variances. The precisions τi = 1/σ2
i are generated independently

from a mixture distribution that has an even chance of drawing from either Γ(20, rate = 20)

or Γ(20, rate = u) and given τi, the means µi are independently N(±0.5/τi, 0.5
2). In this set-

ting, the magnitude of the variances increase with u and the means grow with the variances.

Panel (b) of Figure 12 reveals that XKB.SG and Grp Linear dominate all other competing

estimators although XKB.M is marginally better than Grp Linear for relatively smaller val-

ues of u. This is in sharp contrast with the performance of Grp Linear and XKB.SG under

the same setting but with unknown variances (Figure 2 in Section 5.1). The distribution of

the variances in this setting is bimodal and carry important structural information regarding

the means. When these variances are known, Grp Linear is able to exploit the additional

information in the variances to conduct a superior estimation of the means. However, when

these variances are unknown, Grp Linear, relying on sample variances, has a substantially

higher relative risk than NEST as the heterogeneity increases (Figure 2 in Section 5.1).
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C.3 Gamma and Weibull mixtures

In this section we provide numerical evidence that demonstrate the performance of the NEST

estimator for compound estimation of the scale parameter of Gamma and Weibull mixtures

in examples B.2 and B.4 of Section B. To choose λ in these settings, we use two fold cross

validation by randomly splitting the observed data Yi = (Yij : 1 ≤ j ≤ m) for unit i into two

approximately equal parts (Ui,Vi) such that Yi = (Ui,Vi).

Scale mixture of Gamma distributions - Consider the setting of example B.2 in Section

B where for j = 1, . . . ,m and i = 1, . . . , n,

Yij | αi, 1/βi
i.i.d∼ Γ(αi, 1/βi), 1/βi

i.i.d∼ G(·).

Here the shape parameters α = (α1, . . . , αn) are known and G(·) is an unspecified prior dis-

tribution on the scale parameters 1/βi. We fix m = 30 and consider two scenarios wherein,

for scenario 1, we let βi
i.i.d∼ Γ(7, 1) and α to be a fixed vector of size n with elements sampled

randomly from (1, 3, 5) with replacement. For scenario 2, βi
i.i.d∼ X 2

5 and α is a fixed vector

of size n with elements sampled randomly from (1, 2, 3) with replacement. We consider four

competing estimators of β across the two scenarios as n varies. The competing estimators in-

clude the NEST estimator from example 2 with λ obtained from two fold cross validation, the

NPMLE based estimator of β from Koenker and Gu (2017), the maximum likelihood estimator

(MLE) of βi which is mαi/
∑m

j=1 Yij and NEST orc which represents the NEST estimator of

example 2 with oracle λ. The average squared error risk of these estimators is calculated

over 100 Monte-Carlo repetitions and figure 13 presents the ratio of the average risks wherein

the denominator is the average risk of NEST orc. For scenario 1 (figure 13 left), the NEST

estimator is almost as good as the NPMLE estimator of β for large n. Scenario 2, on the

other hand, represents a challenging setting where βi are relatively smaller in comparison to

those in scenario 1. In this setting, the NEST estimator has a lower relative risk than the

NPMLE across all n.
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Figure 13: Comparison of relative risk for estimating β under a scale mixture of Gamma

distributions. Left: Scenario 1 - βi
i.i.d∼ Γ(7, 1) and α to be a fixed vector of size n with

elements sampled randomly from (1, 3, 5) with replacement. Right: Scenario 2 -βi
i.i.d∼ X 2

5 and
α is a fixed vector of size n with elements sampled randomly from (1, 2, 3) with replacement.
Here m is fixed at 30.

Scale mixture of Weibull distributions - Consider the setting of example 4 in Section

B where for j = 1, . . . ,m and i = 1, . . . , n,

Yij | ki, βi i.i.d∼ Weibull(ki, βi), βi
i.i.d∼ G(·).

Here the shape parameters k = (k1, . . . , kn) are known and G(·) is an unspecified prior

distribution on the scale parameters βi. We fix m = 30 and consider two scenarios wherein,

for scenario 1, we let βi = |Zi| where Zi
i.i.d∼ N(1, 0.12) and for scenario 2, βi

i.i.d∼ (1/3)δ(0.75)+

(1/3)δ(1) + (1/3)δ(1.25) . In each case, α is a fixed vector of size n with elements sampled

randomly from (1, 2, 3) with replacement. Analogous to figure 13, figure 14 presents the

relative risks of the competing estimators of β across the two scenarios as n varies. The

competing estimators include the NEST estimator from example 4 with λ obtained from

two fold cross validation, the NPMLE based estimator of β, the maximum likelihood estimator

(MLE) of βi which is m/
∑m

j=1 Y
ki
ij and NEST orc which represents the NEST estimator of

example 4 with oracle λ. We note that for both the scenarios and particularly for scenario

2, the NEST estimator has a lower relative risk than the NPMLE for large n.
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Figure 14: Comparison of relative risk for estimating β under a scale mixture of Weibull

distributions. Left: Scenario 1 - βi = |Zi| where Zi
i.i.d∼ N(1, 0.12). Right: Scenario 2 -

βi
i.i.d∼ (1/3)δ(0.75) + (1/3)δ(1) + (1/3)δ(1.25) . Here α is a fixed vector of size n with elements

sampled randomly from (1, 2, 3) with replacement and m is fixed at 30.
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