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Abstract

Exploiting spatial patterns in large-scale multiple testing promises to improve both

power and interpretability of false discovery rate (FDR) analyses. This article develops

a new class of locally–adaptive weighting and screening (LAWS) rules that directly

incorporates useful local patterns into inference. The idea involves constructing robust

and structure-adaptive weights according to the estimated local sparsity levels. LAWS

provides a unified framework for a broad range of spatial problems and is fully data-

driven. It is shown that LAWS controls the FDR asymptotically under mild conditions

on dependence. The finite sample performance is investigated using simulated data,

which demonstrates that LAWS controls the FDR and outperforms existing methods

in power. The efficiency gain is substantial in many settings. We further illustrate the

merits of LAWS through applications to the analysis of 2D and 3D images.
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1 Introduction

1.1 Structural information in spatial multiple testing

Spatial multiple testing arises frequently from a wide variety of applications including func-

tional neuroimaging, environmental studies, disease mapping and astronomical surveys.

Intuitively, exploiting spatial structures can help identify signals more accurately and im-

prove the interpretability of scientific findings. There are various ways of incorporating

spatial information into the inferential process: the spatial structures and covariates may

be utilized to form new hypotheses, define novel error rates, prioritize key tasks and con-

struct new test statistics. For example, in Pacifico et al. (2004) and Heller et al. (2006),

pre-determined spatial clusters are used to form new hypotheses with clusters as basic infer-

ence units. Benjamini and Heller (2007) suggested that aggregating the data from nearby

locations can increase the signal-to-noise ratio and reduce the multiplicity. To reflect the

relative importance of decision errors, Benjamini and Heller (2007), Sun et al. (2015), and

Basu et al. (2018) proposed to take into account spatial covariates such as the size of a

cluster when defining the error rates. Moreover, the prior knowledge on the relationship

between individual locations and spatial clusters is highly informative and can be utilized

to develop new hierarchical testing and selective inference procedures, which promise to

improve both the power and interpretability (Yekutieli, 2008; Benjamini and Bogomolov,

2014).

1.2 Challenges of dependence in multiple testing

The localization of sparse signals from massive spatial data often involves conducting thou-

sands and even millions of hypotheses tests. The false discovery rate (FDR; Benjamini and

Hochberg, 1995) provides a powerful and practical criterion for multiplicity adjustment in

large-scale testing problems. An important line of research is concerned with the impact

of dependence on FDR procedures. The Benjamini-Hochberg (BH) method is shown to be

valid for FDR control under a range of dependence settings (Benjamini and Yekutieli, 2001;

Sarkar, 2002). In particular, Wu (2008) developed conditions under which the BH method

controls the FDR for spatially correlated tests in a hidden Markov random field. Mean-

while, Efron (2007) argued that correlation may degrade statistical accuracy and should be

2



accounted for when conducting simultaneous inference. Optimality under dependence has

been investigated in Sun and Cai (2009), which showed, in a hidden Markov model, that

incorporating dependence structure into a multiple-testing procedure can greatly improve

the efficiency of conventional approaches that ignore dependence. This idea has been fur-

ther explored in a range of spatial settings, including the Gaussian random field models

(Sun et al., 2015), Ising models (Shu et al., 2015), spatial change-point models (Cao and

Wu, 2015), and graphical models (Liu et al., 2016a).

Most spatial multiple testing methods have assumed that clusters are known a priori, or

the dependence structure can be well estimated from data. However, there are several prac-

tical issues. First, the spatial clusters, which are typically formed by aggregating nearby

locations according to prior knowledge (e.g. Heller et al., 2006), can be mis-specified. In

other works (e.g. Pacifico et al., 2004; Sun et al., 2015), the clusters are obtained by in-

specting the testing results from a preliminary point-wise analysis, which can be subjective

and highly sensitive to the choice of threshold in the tests at individual locations. Second,

contiguous spatial clusters may not serve as an appropriate proxy of reality when signals

appearing more frequently in a local area but do not form adjoining regions. Hence it is

desirable to develop robust and fully data-driven procedures to capture local patterns in

spatial data more accurately. Third, although existing spatial FDR methods have good

performances when spatial models are estimated well, the commonly used computational

algorithms may not produce desired estimates if assumptions on the underlying spatial pro-

cess are violated, or the model/prior is misspecified. The poor estimates may lead to less

powerful and even invalid FDR procedures. Finally, estimating/modeling spatial depen-

dence structures is very challenging in high-dimensional settings, wherein strong regularity

conditions and heavy computations greatly limit the scope and applicability of related

works.

1.3 The main idea in our approach

The goal of the present paper is to develop simple and robust FDR methods for spatial

analysis that are capable of adaptively learning the sparse structure of the underlying spa-

tial process without prior knowledge on clusters, parametric assumptions of the underlying

model or intensive computation of posterior distributions. The main idea is to recast spatial
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multiple testing in the framework of simultaneous inference with auxiliary information. Un-

der this framework, the p-values play primary roles for assessing the significance, while the

spatial locations are viewed as auxiliary variables for providing important structural infor-

mation to assist inference. We propose a locally adaptive weighting and screening (LAWS)

approach that consists of three steps. LAWS first estimates the local sparsity structure us-

ing a screening approach, then constructs spatially adaptive weights to reorder the p-values,

and finally chooses a threshold to adjust for multiplicity. The proposed method bypasses

complicated spatial modeling and directly incorporates useful structures into inference.

LAWS is nonparametric and assumption-lean – it only requires that the underlying spatial

process is smooth at most locations. By capturing unknown spatial patterns adaptively,

LAWS tends to up–weight/down–weight the p-values in neighborhoods where signals are

abundant/sporadic. Our numerical results show that LAWS offers dramatic improvements

in power over conventional methods in many settings.

1.4 Connection to existing works and our contributions

Large-scale inference with auxiliary/side information is an important topic that has received

much recent attention. There are two lines of research, where the additional information

is respectively (i) extracted from the same data set using carefully constructed auxiliary

sequences (Liu, 2014; Cai et al., 2019), or (ii) gleaned from secondary data sources such

as prior studies and external covariates (Scott et al., 2015; Fortney et al., 2015; Ignatiadis

et al., 2016; Basu et al., 2018). Our work departs from these two lines of research in that

the side information corresponds to the intrinsic ordering of spatial data. The spatial order-

ing, which encodes useful patterns such as local clusters and smoothness of the underlying

process, is different from conventional auxiliary variables that are either quantitative or

qualitative. For example, in the context of inference with side information, the qualitative

and quantitative auxiliary variables are often used to create groups to reflect the inhomo-

geneity among the hypotheses (Efron, 2008; Ferkingstad et al., 2008; Cai and Sun, 2009).

The works on multiple testing with groups show that weighted p-values methods can be

developed to improve the power of BH (Hu et al., 2010; Liu et al., 2016b; Barber and

Ramdas, 2017; Xia et al., 2019). However, the grouping strategy is not suitable for spatial

analysis because dividing a region into informative groups requires either good prior knowl-
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edge or intensive computation, which becomes infeasible in many scenarios, in particular

when hypotheses are located on a two or three dimensional lattice. Moreover, as pointed

out by Cai et al. (2019), grouping corresponds to discretizing a continuous variable, which

often leads to substantial information loss. By contrast, LAWS directly incorporates the

spatial structure into the weights and eliminates the need to define groups.

FDR control via LAWS offers a unified, principled and objective way for exploiting

important spatial structures. It has several advantages over recent works on multiple testing

with side information such as AdaPT (Lei and Fithian, 2018), SABHA (Li and Barber,

2019) and STAR (Lei et al., 2017). First, LAWS provides a general framework that is

capable of handling a broad range of spatial settings. Concretely, SABHA only develops

weights for grouped structure and ordered structure along a one-dimensional direction,

whereas STAR only works when signals form contiguous clusters with convexity or other

shape constraints. By contrast, LAWS is applicable to two or three-dimensional settings,

and makes no assumption on the contiguity or convexity of the signal process as required

by STAR. Second, LAWS is motivated by the optimality theory in Cai et al. (2019) and

built upon solid theoretical foundations. We prove that the oracle LAWS method uniformly

dominates BH in ranking and propose data-driven methods that asymptotically emulate the

oracle. We present both intuitions and numerical results to demonstrate that the weights in

LAWS are in general superior to the weights in SABHA. Finally, in contrast with AdaPT,

SABHA and STAR whose performances heavily depend on the quality of prior information

or human interactions, LAWS is fully data-driven and provides an objective and principled

approach to incorporate side information. This feature is attractive in many scenarios

where investigators do not have much flexibility to control the study design or decision-

making process. Finally, we develop new theories to prove that LAWS controls the FDR

asymptotically under dependence. The theory only requires mild conditions that seem to

be substantially weaker than existing results on spatial FDR analysis in the literature.

1.5 Organization

The article is organized as follows. Section 2 introduces the model and problem formulation.

Section 3 develops structure–adaptive weights and illustrates its superiority in ranking.

In Section 4, we propose the LAWS procedure for spatial multiple testing and study its
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theoretical properties. Simulation is conducted in Section 5 to investigate the finite sample

performance of LAWS and compare it with existing methods. The merits of LAWS are

further illustrated in Section 6 through applications to analyzing 2D and 3D images. The

proofs are provided in the Appendix.

2 Model and Problem Formulation

Let S ⊂ Rd denote a d-dimensional spatial domain and s a location. We focus on a setting

where hypotheses are located on a finite, regular lattice S ⊂ S and data are observed

at every location s ∈ S. We consider the infill–asymptotics framework (Stein, 2012) and

assume S → S in our theoretical analysis. The setup is suitable for analyzing, say, high-

frequency linear network data and fine resolution images from satellite monitoring and

neuroimaging1.

Let θ(s) be a binary variable, with θ(s) = 1 and θ(s) = 0 respectively indicating the

presence and absence of a signal of interest at location s. The identification of spatial

signals can be formulated as a multiple testing problem:

H0(s) : θ(s) = 0 versus H1(s) : θ(s) = 1, s ∈ S. (2.1)

Let {T (s) : s ∈ S} be the summary statistic at location s. The common practice in multiple

testing is to first convert T (s) to a p-value p(s) and then choose a threshold that corrects

for multiplicity. The conditional cumulative distribution functions (CDF) of the p-values

are given by

P {p(s) ≤ t|θ(s)} = {1− θ(s)}t+ θ(s)G1(t|s), (2.2)

where t ∈ [0, 1] and G1(t|s) is the non-null p-value CDF at s. The corresponding non-null

density is denoted by g1(t|s). Define the sparsity level at location s

π(s) = P {θ(s) = 1} . (2.3)

1In other applications such as climate change analysis, one observes incomplete data points at irregular
locations (e.g. weather monitoring stations) but needs to make inference at every point in the whole spatial
domain. This setting goes beyond the scope of our work; see Sun et al. (2015) for related discussions.
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Due to the existence of spatial correlations and external covariates, signals may appear

more frequently in certain regions, and the magnitude of non-null effects may also fluctuate

across locations. Consequently we allow π(s) and G1(t|s) to vary across the spatial domain

to capture important local patterns. A mild condition in our methodological development,

characterized precisely in Section 4, is that π(s) varies smoothly as a continuous function of

s. The smoothness in the sparsity levels provides the key structural information, which can

be exploited to integrate information from nearby locations and construct more efficient

spatial multiple testing procedures.

We focus on point-wise analysis where testing units are individual locations. The deci-

sion at location s is represented by a binary variable δ(s), where δ(s) = 1 if H0(s) is rejected

and δ(s) = 0 otherwise. The widely used false discovery rate (Benjamini and Hochberg,

1995) is defined as

FDR = E
{∑

s∈S{1− θ(s)}δ(s)
max{

∑
s∈S δ(s), 1}

}
. (2.4)

The power of an FDR procedure δδδ = {δ(s) : s ∈ S} can be evaluated using the expected

number of true positives:

ETP(δδδ) ≡ Ψ(δδδ) = E

{∑
s∈S

θ(s)δ(s)

}
. (2.5)

It is important to note that although we only consider point-wise tests, the proposed

LAWS procedure provides a particularly effective tool for revealing underlying spatial clus-

ters. Hence it may be employed in the preliminary stage of a cluster-wise inference where

spatial clusters need to be specified by investigators based on point-wise testing. Moreover,

in contrast with existing methods which assume known spatial clusters, LAWS provides a

fully data-driven approach to incorporate local structures and does not suffer from possible

mis-specifications of the underlying model.

3 Structure–Adaptive Weighting and Its Properties

This section describes a weighted p-value approach to spatial FDR analysis. The key idea is

to construct weights by exploiting the local sparsity structure in a spatial domain. A mul-

tiple testing procedure involves two steps: ranking and thresholding. It can be represented
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by a thresholding rule of the form δ(s, t) = I{T (s) ≤ t}, where T (s) is the test statistic to

order/rank the hypotheses and t is a threshold for adjusting multiplicity. In Section 3.1,

we study how to improve the ranking by exploiting the spatial pattern and constructing

structure–adaptive weights to adjust the p-values. Further intuition and connections to

existing work are discussed in Section 3.2. In Section 3.3, we address the threshold issue

and illustrate the superiority of the proposed weighting strategy. Throughout this section

we assume that the local sparsity level π(s) is known. The setting with unknown sparsity

structure is considered in Section 4.

3.1 Incorporating sparsity structure by adjusting the p-values

To motivate our weighting strategy, consider the following covariate–adjusted mixture

model under the independence assumption

X(s)
ind∼ f(x|s) = {(1− π(s)}f0(x|s) + π(s)f1(x|s), (3.1)

where the covariate s encodes useful side information, f0(x|s) and f1(x|s) are the null and

non-null densities, π(s) is the sparsity level and f(x|s) is the mixture density. Ignoring the

inhomogeneity captured by the covariate s, Model (3.1) reduces to the widely used random

mixture model (Efron et al., 2001; Newton et al., 2004; Sun and Cai, 2007)

X(s)
iid∼ f(x) = (1− π)f0(x) + πf1(x). (3.2)

Define the conditional (or covariate–adjusted) local false discovery rate

CLfdr(x|s) = P {θ(s) = 0|x, s} =
{(1− π(s)}f0(x|s)

f(x|s)
. (3.3)

It follows from the optimality theory in Cai et al. (2019) [Section 4.1] that under Model

(3.1), the CLfdr thresholding rule is optimal in the sense that it maximizes the ETP subject

to the constraint on FDR.

However, CLfdr cannot handle dependent tests. Under the spatial setting, we aim to
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develop weighted p-values to approximate the optimal ranking by CLfdr. Let

Λ(x|s) =
1− π(s)

π(s)
· f0(x|s)
f1(x|s)

. (3.4)

Then CLfdr = Λ/(Λ + 1) is monotone in Λ. The inspection of (3.4) reveals that whether

θ(s) = 1 should be decided based on two factors: (a) the information of the sparsity

structure that reflects how frequently signals appear in the neighborhood, i.e. 1−π(s)
π(s) ; (b)

the information exhibited by the data itself that indicates the strength of evidence against

the null, i.e. f0(x|s)
f1(x|s) . The term f0(x|s)

f1(x|s) is extremely difficult to model and calculate, we

propose to replace it by the p-value, which also captures the evidence against the null in

the data. Combining the above concerns, we define the weighted p-values:

pw(s) = min

{
1− π(s)

π(s)
p(s), 1

}
= min

{
p(s)

w(s)
, 1

}
, s ∈ S, (3.5)

where w(s) = π(s)
1−π(s) . Similar to (3.4), the weighted p-values (3.5) combines the structural

information in the neighborhood and evidence of the signal at a specific location s.

3.2 Intuitions and connections to existing weighting methods

Weighting is a widely used strategy for incorporating side information into FDR analyses

(Benjamini and Hochberg, 1997; Genovese et al., 2006; Roquain and Van De Wiel, 2009;

Basu et al., 2018). Unlike other methods where the side information is acquired externally

through domain knowledge or prior data, our inference aims to utilize the spatial informa-

tion, which encodes the intrinsic structure of the collected data. The spatial structure is

effectively incorporated into inference via w(s) = π(s)
1−π(s) . The key structural assumption,

which is suitable for a wide range of applications, is that the local sparsity level π(s) varies

smoothly in s. Our proposed LAWS procedure employs a kernel screening method to esti-

mate π(s) by pooling information from points close to s. It effectively takes into account

important local patterns such as spatial clusters in a data-adaptive fashion. For example,

suppose there are many signals in the neighborhood of s, then LAWS tends to produce a

large estimate of π(s), thereby up–weighting the p-values in the neighborhood.

The SABHA algorithm by Li and Barber (2019) adopts a different set of weights
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w′(s) = 1
1−π(s) . Under Model (3.2), SABHA reduces to the methods in Benjamini and

Hochberg (2000); Genovese and Wasserman (2002); Storey (2002), who suggested applying

BH procedure to adjusted p-values (1 − π)p(s). These works showed that exploiting the

global sparsity structure π can improve the power of BH by raising the FDR from (1− π)α

to the nominal level α. The ideas in SABHA and LAWS further illustrate that exploiting

the local patterns can improve the efficiency even more dramatically; the idea is formalized

in our theoretical analysis in Section 3.3. Compared to the SABHA weight w′(s) = 1
1−π(s) ,

our weight w(s) = π(s)
1−π(s) can separate clustered non-null p-values more effectively; this

is intuitively justified by the connection to the optimality theory (3.3) and confirmed by

our simulation studies. Moreover, the motivation, interpretation and estimation of our

weighted p-values are all fundamentally different from the weights in Hu et al. (2010); Xia

et al. (2019), which are developed under the group setting.

Finally, we stress that w(s) only captures the sparsity structure, and the amplitude

and variance structures of the underlying spatial process, which is subsumed in the ratio

f0(x|s)
f1(x|s) , has been intentionally discarded when constructing our weights. This leads to a

much simpler and theoretically sound methodology. It remains an open question regarding

the information loss when suppressing other structural information in the proposed weights.

The heterogeneity issue and the derivation of optimal weighting functions are highly non-

trivial (Peña et al., 2011; Ignatiadis et al., 2016; Habiger, 2017; Habiger et al., 2017). Note

that existing methods are already very complicated for the independent tests and it would

require substantial efforts to extend these methods to the spatial setting.

3.3 A theoretical analysis of ranking

This section demonstrates the benefit of weighting. Let δδδv(t) = {δv(s, t) : s ∈ S} denote

a class of testing rules where δv(s, t) = I{pv(s) ≤ t}, and pv(s) = min
{
p(s)
v(s) , 1

}
with v(s)

being the pre-specified weight. Consider the covariate–adjusted p-value mixture model

(2.2). It is shown in Proposition 2 of Appendix C that, under mild conditions, the FDR of

δδδv(t) can be written as

FDR{δδδv(t)} = Qv(t) + o(1) =

∑
s∈S{1− π(s)}v(s)t∑

s∈S{1− π(s)}v(s)t+
∑

s∈S π(s)G1{v(s)t|s}
+ o(1). (3.6)
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The power of δδδv(t) is evaluated using the ETP

Ψ{δδδv(t)} =
∑
s∈S

π(s)G1{v(s)t|s}.

To focus on the main idea, we derive the oracle FDR procedure under an asymptotic

setting, which uses the leading term Qv(t) in (3.6) to approximate the actual FDR. Define

the oracle threshold tvOR = sup{t : Qv(t) ≤ α}. Then the oracle procedure is

δδδvOR ≡ δδδv(tvOR) = [I{pv(s) ≤ tvOR} : s ∈ S].

Next we demonstrate that the weighted p-values pw(s) defined in (3.5) produces better

ranking than the unweighted p-values. Our basic strategy is to show that at the same FDR

level, thresholding (oracle) weighted p-value always yields larger ETP than unweighted p-

values. Consider two sets of weights {v(s) = 1 : s ∈ S} and {v(s) = w(s) : s ∈ S}. The

asymptotic FDR and ETP of δδδ1(t) and δδδw(t) are denoted by Q1(t), Qw(t), Ψ1(t) and Ψw(t).

The corresponding oracle procedures are defined as δδδ1OR ≡ δδδ1(t1OR) and δδδwOR ≡ δδδw(twOR).

The next theorem shows that δδδwOR uniformly dominates δδδ1OR.

Theorem 1 Assume that
∑
s∈S π(s)∑

s∈S{1−π(s)}
≤ 1. For each s ∈ S, if the function t→ G1(t|s) is

concave and the function x→ G1(t/x|s) is convex for mins∈Sw
−1(s) ≤ x ≤ maxs∈Sw

−1(s),

then we have

(a)Qw(t1OR) ≤ Q1(t1OR) ≤ α; (b)Ψw(twOR) ≥ Ψw(t1OR) ≥ Ψ1(t1OR).

Condition
∑
s∈S π(s)∑

s∈S{1−π(s)}
≤ 1 in Theorem 1 is mild. It only requires that the expected

number of alternative hypotheses is smaller than or equal to the expected number of null

hypotheses. The condition corresponds to the notion of sparsity that holds trivially in most

practical situations. By Theorem 1, we conclude that the superiority of δδδwOR over δδδ1OR is

due to the improved ranking via weighted p-values since with the same threshold t1OR, we

simultaneously have Qw(t1OR) ≤ Q1(t1OR) and Ψw(t1OR) ≥ Ψ1(t1OR).
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4 Spatial Multiple Testing by LAWS

This section discusses a locally adaptive weighting and screening (LAWS) approach to

spatial multiple testing. To emulate the oracle procedure δδδwOR, we need to estimate two

unknown quantities: the sparsity level π(s) and threshold twOR. We first develop a nonpara-

metric screening approach for estimating π(s) in Section 4.1, then propose a data-driven

procedure to approximate twOR in Section 4.2, and finally establish the theoretical properties

of LAWS in Section 4.3.

4.1 Sparsity Estimation via Screening

The direct estimation of π(s) is very difficult. We instead introduce an intermediate quan-

tity to approximate π(s):

πτ (s) = 1− P {p(s) > τ}
1− τ

, 0 < τ < 1. (4.1)

We first present some intuitions to explain why πτ (s) provides a good approximation to π(s),

then describe a screening approach to estimate πτ (s) and finally establish the theoretical

properties of the proposed estimator.

The relative bias of the approximation can be calculated as

πτ (s)− π(s)

π(s)
= −1−G1(τ |s)

1− τ
.

This result has two implications. First, the bias is always negative, which desirably leads

to conservative FDR control as we show in Theorem 2. Second, as τ becomes larger, we

expect that the null p-values will become increasingly dominant in the right tail area [τ, 1)

compared to the non-null p-values, making the ratio 1−G1(τ |s)
1−τ very small. Hence πτ (s)

provides a good approximation to π(s) with a suitably chosen τ .

We now describe two key steps in estimating πτ (s): smoothing and screening. In the

smoothing step, we exploit the structural assumption that π(s) [thus πτ (s)] varies as a

smooth function of spatial location s. In reality we only have one observation at location

s. To pool information from nearby locations, we use a kernel function to assign weights to

observations according to their distances to s. Specifically, for any given grid S on S ⊂ Rd,
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let K : Rd → R be a positive, bounded and symmetric kernel function satisfying

∫
Rd
K(t)dt = 1,

∫
Rd
tK(t)dt = 0,

∫
Rd
tTtK(t)dt <∞.

Denote by Kh(t) = h−1K(t/h), where h is the bandwidth. At location s, define

vh(s, s′) =
Kh(s− s′)
Kh(0)

, (4.2)

for all s′ ∈ S. Under the spatial setting, Kh(s−s′) is computed as a function of the Euclidean

distance ‖s−s′‖ and h > 0 is a scalar. Now consider the quantity ms =
∑

s′∈S vh(s, s′). We

can conceptualize ms as the “total mass” (or “total number of observations”) at location

s. This is a key quantity in our methodological development. Thus, the smoothing step

utilizes the spatial structure to calculate ms by borrowing strength from points close to s

while placing little weight on points far apart from s.

Next we explain the screening step. Motivated by (4.1), we first apply a screening

procedure with threshold τ to obtain a subset T (τ) = {s ∈ S : p(s) > τ}. Suppose we are

interested in counting how many p-values from the null are greater than τ among the ms

“observations” at s. The empirical count, which assumes that the majority cases in T (τ)

come from the null, is given by ∑
s′∈Tτ vh(s, s′). (4.3)

By contrast, the expected count can be calculated theoretically as

{
∑

s′∈S vh(s, s′)}{1− πτ (s)}(1− τ). (4.4)

Setting Equations (4.3) and (4.4) equal, we obtain the following estimate

π̂τ (s) = 1−
∑

s′∈Tτ vh(s, s′)

(1− τ)
∑

s′∈S vh(s, s′)
. (4.5)

Next we justify the estimator (4.5) by showing that π̂τ (s) converges to πτ (s) for every

s ∈ S as S → S by appealing to the infill–asymptotics framework (Stein, 2012), where the

grid S becomes denser and denser in a fixed and finite domain S ∈ Rd. For each s ∈ S,

let λmin(s) and λmax(s) respectively be the smallest and largest eigenvalues of the Hessian
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matrix P(2)(p(s) > τ) ∈ Rd×d. We introduce the following technical assumptions.

(A1) Assume that πτ (·) has continuous first and second partial derivatives and there exists

a constant C > 0 that −C ≤ λmin(s) ≤ λmax(s) ≤ C uniformly for all s ∈ S.

(A2) Assume that Var(
∑

s∈S I{p(s) > τ}) ≤ C ′
∑

s∈S Var(I{p(s) > τ}) for some constant

C ′ > 1.

Proposition 1 Under (A1) and (A2), if h� |S|−1, we have, uniformly for all s ∈ S,

E{π̂τ (s)− πτ (s)}2 → 0, as S→ S.

Remark 1 Assumption (A1) is a mild regularity condition on the alternative CDF G1(τ |s).

(A2) assumes that most of the p-values are weakly correlated and it can be further re-

laxed with a larger choice of the bandwidth. For example, with the common choice of

h ∼ |S|−1/5, by the proof of Proposition 1, we can relax (A2) to “Var(
∑

s∈S I{p(s) > τ}) ≤

C ′|S|c
∑

s∈S Var(I{p(s) > τ}) for some constant c < 4/5”, which allows the p-values to be

highly correlated.

4.2 Data-driven procedure

This section describes the proposed LAWS procedure for FDR control. Define the locally

adaptive weights

ŵ(s) =
π̂(s)

1− π̂(s)
, s ∈ S, (4.6)

where π̂(s) is estimated by the screening approach (4.5) [the tuning parameter τ has been

suppressed in the expression]. To increase the stability of the algorithm, we take π̂(s) =

(1 − ν) if π̂(s) > 1 − ν and take π̂(s) = ν if π̂(s) < ν with ν = 10−5. Next we order the

weighted p-values from the smallest to largest. If π(s) is known and the threshold is given

by tw, then the expected number of false positives (EFP) can be calculated as

EFP =
∑
s∈S

P {pw(s) ≤ tw|θ(s) = 0}P {θ(s) = 0} =
∑
s∈S

π(s)tw. (4.7)

It follows that if j hypotheses are rejected along the ranking, then we expect that
∑

s∈S π̂(s)pŵ(j)

rejections are likely to be false positives. It follows that j−1
∑

s∈S π̂(s)pŵ(j) provides a good
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estimate of the false discovery proportion (FDP). The following step-wise algorithm selects

a threshold to maximize the number of rejections subject to the FDP constraint.

Algorithm 1 The LAWS Procedure

1: Order the weighted p-values from the smallest to largest pŵ(1), · · · , p
ŵ
(m) and denote cor-

responding null hypotheses H(1), · · · , H(m).

2: Let kŵ = max
{
j : j−1

∑
s∈S π̂(s)pŵ(j) ≤ α

}
.

3: Reject H(1), · · · , H(kŵ).

Consider the special case where π̂(s) = π̂ for all s ∈ S. Then LAWS coincides with the

SABHA (Li and Barber, 2019), and both recover the methods in Benjamini and Hochberg

(2000); Storey (2002); Genovese and Wasserman (2002), which are essentially equivalent to

applying the BH algorithm to the adjusted p-values (1− π̂)p(s). However, the ranking by

LAWS is substantially different from SABHA when π(s) are heterogeneous. Our simulations

show that LAWS is more powerful than SABHA and the power gain can be substantial in

many settings. Moreover, SABHA does not provide a systematic way to estimate π(s). It

also requires preordering or grouping of the hypotheses, which is not suitable for handling

higher-dimensional spatial settings.

4.3 Theoretical properties

This section studies the theoretical properties of the LAWS procedure. Define the z-values

by z(s) = Φ−1(1− p(s)/2), for s ∈ S, and let m = |S|. Arrange {s ∈ S} in any pre-specified

order {s1, . . . , sm}2 and denote the corresponding z-values Z = (z1, . . . , zm)T. We collect

below several regularity conditions for the asymptotic error rates control. In spatial data

analysis with a latent process {θ(s) : s ∈ S}, the dependence among p-values may come

from two possible sources: the correlations among p-values when θ(s) are given and the

correlations among θ(s). Our conditions on these two types of correlations are respectively

specified in (A3) and (A4).

(A3) Define (ri,j)m×m = R = Corr(Z). Assume max1≤i<j≤m |ri,j | ≤ r < 1 for some

2The actual order would not affect the methodology or theory as the weights are fully determined by the
spatial structure. We only need an ordering for characterizing the dependence structure between all pairs
of p-values.
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constant r > 0. Moreover, there exists γ > 0 such that max{i:θ(si)=0} |Γi(γ)| = o(mκ)

for some constant 0 < κ < 1−r
1+r , where Γi(γ) = {j : 1 ≤ j ≤ m, |ri,j | ≥ (logm)−2−γ}.

(A4) Under Model (2.3), there exists a sufficiently small constant ξ > 0, such that πτ (s) ∈

[ξ, 1− ξ], and that Var
[∑

s∈S I{θ(s) = 0}
]

= O(m1+ζ) for some constant 0 ≤ ζ < 1.

(A5) Define Sρ =
{
i : 1 ≤ i ≤ m, |µi| ≥ (logm)(1+ρ)/2

}
, where µi = E(zi). For some ρ > 0

and some δ > 0, |Sρ| ≥ [1/(π1/2α) + δ](logm)1/2, where π ≈ 3.14 is a math constant.

Remark 2 Condition (A3) assumes that most of the null p-values [i.e. given that θ(s) =

0] are weakly correlated. The condition can be fulfilled by a wide class of correlation

structures because (i) it still allows each p-value to be highly correlated with polynomially

growing number of other p-values under the null and (ii) we do not impose any conditions

on the correlation structures of the p-values under the alternative. Condition (A4) only

assumes that the latent variables {θ(s) : s ∈ S} are not perfectly correlated. It allows

highly correlated θ(s) so is a rather weak condition. In the case where θ(s) are mutually

independent, (A4) is satisfied trivially with ζ = 0. Condition (A5) is mild, as it only

requires that there exist a few spatial locations with mean effects of z-values exceeding

(logm)(1+ρ)/2 for some ρ > 0.

Our theoretical analysis is divided into two steps. We first consider the setup where π(s)

is known (Theorem 2) and then turn to the case where π(s) must be estimated (Theorem

3). Define the FDP of a decision rule δv(t) by

FDP{δv(t)} =

∑
s∈S{1− θ(s)}δv(s, t)

max{
∑

s∈S δ
v(s, t), 1}

.

We first take v(s) as w(s) = πτ (s)
1−πτ (s) with known πτ (s). Then similar to Algorithm 1,

we order the weighted p-values from the smallest to largest pw(1), · · · , p
w
(m), and calculate

kw = max
{
j : j−1

∑
s∈S π

τ (s)pw(j) ≤ α
}

. The corresponding decision rule, denoted δw ≡

δw
{
pw(kw)

}
, is to reject H0(s) with pw(s) ≤ pw(kw).

Let H0 be the set of null hypotheses and H1 be the set of alternatives. Without loss of

generality, we assume that m0 = |H0| ≥ cm for some c > 0. (Otherwise we could simply

reject all the hypotheses, and the FDR would tend to zero.) The next theorem shows that

δw controls both the FDP and FDR at the nominal level asymptotically under dependency.
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Theorem 2 Under Conditions (A3) - (A5), we have for any ε > 0

lim
m→∞

FDR(δw) ≤ α, and lim
m→∞

P {FDP(δw) ≤ α+ ε} = 1.

Remark 3 The decision rule δw is defined based on the weight w(s) = πτ (s)
1−πτ (s) , where πτ (s)

is a conservative approximation of π(s) as explained in Section 4.1. Theorem 2 shows that

the use of πτ (s) instead of π(s) leads to conservative error rates control.

The next theorem establishes the theoretical properties of the data-driven LAWS pro-

cedure (Algorithm 1, with decision rule denoted by δŵ ≡ δŵ
{
pŵ
(kŵ)

}
), which utilizes the

estimated weights via (4.5).

Theorem 3 Under the conditions in Proposition 1 and Theorem 2, we have for any ε > 0

lim
S→S

FDR(δŵ) ≤ α, and lim
S→S

P(FDP(δŵ) ≤ α+ ε) = 1.

5 Simulation

This section conducts simulation studies to compare the proposed LAWS procedure with

several competing methods. The implementation details are first described in Section 5.1.

Sections 5.2 and 5.3 respectively consider linear block and triangle block patterns. The

applications to higher dimensional settings (2D and 3D) for identifying more complicated

spatial patterns are illustrated in Section 6.

5.1 Estimating the conditional proportions

The proposed estimator (4.5) captures the sparsity structure and plays a key role in con-

structing the weights. This section first discusses its implementation and illustrates its

effectiveness. To create the screening subset T , we choose τ as the p-value threshold of

the BH procedure at α = 0.9. This ensures that the null cases are dominant in T . See

Appendix B for a more detailed discussion on the bias-variance tradeoff when calibrating

τ . The bandwidth h is set using the “h.cvv” option in the R package kedd.

Next we investigate the performance of π̂ using simulated data. We generate m = 5, 000
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hypotheses from the following normal mixture model:

Xi|θi
ind∼ (1− θi)N(0, 1) + θiN(µ, 1), θi ∼ Bernoulli(πi). (5.1)

We consider two setups under which the signals appear with elevated frequencies in the

following blocks [1001, 1200], [2001, 2200], [3001, 3200], [4001, 4200]. The patterns of π(s),

which are piecewise constants and triangle blocks, are shown in the top and bottom rows

in Figure 1 (solid red lines), respectively. We can see that the varying sparsity structure of

the spatial data can be reasonably captured by the estimated π̂(s) (dashed blue lines). As

predicted by theory, our estimated π̂(s) tend to be smaller than true π(s) within the blocks

where signals are observed with elevated frequencies. The underestimation of π(s) leads to

conservative FDR levels. This is confirmed by the simulation in the next section.

0 1000 2000 3000 4000 5000

0.
0

0.
4

0.
8

Linear Block

s

π s

0 1000 2000 3000 4000 5000

0.
0

0.
4

0.
8

Triangle Block

s

π s

Figure 1: True πs (solid lines) vs estimated π̂s (dashed lines). Top row: piecewise constants;
bottom row: triangle blocks.

5.2 The block–wise 1D setting with piece-wise constants

This section compares LAWS with competitive methods. Similar to the previous section,

we generate data from (5.1) under the setup where π(s) is a piecewise constant function

(top row of Figure 1). The following methods are applied to the simulated data:

• Benjamini-Hochberg procedure (BH);
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• SABHA with known π(s) (SABHA.OR);

• data-driven SABHA with estimated π̂(s) (SABHA.DD);

• LAWS with known π(s) (LAWS.OR); and

• data-driven LAWS with estimated π̂(s) (LAWS.DD).

We stress that our proposed estimator (4.5) has been used to implement SABHA. The

SABHA paper does not provide an estimator of π(s) with proven theoretical properties. The

inclusion of SABHA is to illustrate the superiority of the LAWS weight w(s) = π(s)/{1−

π(s)} over the SABHA weight 1/{1 − π(s)}. The FDR and average power [defined as

E{
∑

s∈S θ(s)δ(s)/
∑

s∈S θ(s)}] of different methods are computed by averaging over 200

replications, and the nominal level is chosen at α = 0.05. The simulation results are

summarized in Figure 2.

In the top row, the signals appear with elevated frequencies in the following blocks:

π(s) = 0.9 for s ∈ [1001, 1200] ∪ [2001, 2200]; π(s) = 0.6 for s ∈ [3001, 3200] ∪ [4001, 4200].

For rest of the locations, we have π(s) = 0.01. We vary µ from 2 to 4 to investigate the

impact of the signal strength. In the bottom row, we fix µ = 2.5. We let π(s) = π0 in

the above specified blocks and π(s) = 0.01 elsewhere. Then π0 is varied from 0.3 to 0.9 to

investigate the impact of sparsity structure.

We can see from Figure 2 that all methods control the FDR at the nominal level, with

LAWS.DD being conservative due to the underestimation of π(s) in the linear blocks (see

also Figure 1). LAWS.OR substantially outperforms SABHA.OR, showing the superiority

of the LAWS weight. Similarly, LAWS.DD outperforms SABHA.DD. Both LAWS and

SABHA, which exploit the varying sparsity structure, outperform BH. This illustrates the

benefits of incorporating side information into inference. Finally, we can see that the

efficiency gain of LAWS over competing methods is more pronounced when the signals

are relatively weak (top row of Figure 2). This shows the advantage of LAWS, which

integrates information from nearby locations via the weighted kernel. Moreover, the power

improvement by LAWS is greater when the signals are more concentrated in the designated

blocks (bottom row of Figure 2). This is consistent with our intuition since larger π0
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Figure 2: FDR and Power comparisons: the linear block pattern.

indicates greater disparity among spatial locations (and hence more informative spatial

structure).

5.3 The block–wise 1D setting with triangular patterns

We generate data from (5.1) under the setup where π(s) follows a triangular block pattern;

see the bottom row of Figure 1 for an illustration. We apply BH, SABHA.OR, SABHA.DD,

LAWS.OR and LAWS.DD to the simulated data and summarize the results in Figure 3.

Similar as before, in the top and bottom rows we respectively vary the signal strength and

sparsity levels. We can see that the power of BH is improved by SABHA, which is further

improved by LAWS. The proposed method is in particular useful when the signals are weak

and the structural information is strong in the spatial data.

5.4 Simulation in 2D setting

This section presents simulation results in the 2D setting. We did not compare with SABHA

and STAR because (i) the original SABHA algorithm cannot be implemented since it is

unclear how to order the hypotheses as a fixed sequence or divide them into groups; (ii) the
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Figure 3: FDR and Power comparisons: the triangular block pattern.

STAR algorithm does not work in one of our settings where the underlying shape is not a

convex region. Instead, we compare with the FDR smoothing method proposed in Tansey

et al. (2018) (“Tansey” in short) for exploiting spatial structure in large multiple-testing

problems.

We generate the data by Model (5.1) on a 200× 200 lattice, where the signals are more

likely to be located on a double-triangle or a rectangle shape as shown in Figure 4. We let

π(s) = 0.9 for the left triangle and left half of the rectangle respectively, π(s) = 0.6 for the

right triangle and right half of the rectangle and let π(s) = 0.01 for the rest of the locations.

Similarly as in the 1D setting, we first vary µ from 2.5 to 4 to investigate the impact of the

signal strength. We then fix µ = 3, let π(s) = π0 in the triangle and rectangle patterns,

π(s) = 0.01 for the rest, and vary π0 from 0.6 to 0.9 to illustrate the impact of sparsity

structure. The empirical FDR and power are computed over 200 replications with nominal

level α = 0.05.

We can see from Figures 5 and 6 that, all methods except Tansey controls the empirical

FDR well and LAWS.DD is slightly more conservative than LAWS.OR due to the negative

bias of πτ as explained in Section 4.1. By successfully incorporating the spatial information,
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Figure 4: 2D triangle and rectangle pattern.

the empirical power of BH has been significantly improved by LAWS.OR and LAWS.DD

for varying signal strengths and sparsity levels. The improvement is more significant when

the signals are weaker or the sparse structure is more informative. Note that, due to the

seriously inflated empirical FDRs, Tansey has higher empirical power than the competing

methods.

5.5 Simulation in 3D setting

We compare in this section the numerical performance of LAWS.DD and LAWS.OR with

Tansey and the BH method in 3D spatial settings. The data are generated by Model (5.1)

on a 3D 20 × 25 × 30 lattice, where the signals are located on a cubic with dimension

10 × 10 × 15. We let π(s) = 0.8 within the cubic and let π(s) = 0.01 for the rest of the

locations. To show the impact of the signal strength and the impact of sparsity structure,

we vary µ and π(s) (fix µ = 3.5 for the latter) in the same way as the 2D settings. The

empirical FDR and power are computed over 200 replications with nominal level α = 0.05.

We see from Figure 7 that, similarly as 1D and 2D settings, all methods except Tansey

control the FDR and LAWS.DD is slightly more conservative than LAWS.OR; the empirical

power of BH is significantly improved by LAWS.OR and LAWS.DD for different signal

strengths and sparsity levels.
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Figure 5: FDR and Power comparisons: the 2D triangle pattern.
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Figure 6: FDR and Power comparisons: the 2D rectangle pattern.

23



2.6 2.8 3.0 3.2 3.4 3.6 3.8

0.
05

0.
10

0.
15

0.
20

FDR Comparison

µ

FD
R

BH
LAWS.OR
LAWS.DD
Tansey

2.6 2.8 3.0 3.2 3.4 3.6 3.8

0.
4

0.
6

0.
8

1.
0

Power Comparison

µ

P
ow
er

0.60 0.65 0.70 0.75 0.80 0.85 0.90

0.
05

0.
10

0.
15

0.
20

FDR Comparison

π

FD
R

BH
LAWS.OR
LAWS.DD
Tansey

0.60 0.65 0.70 0.75 0.80 0.85 0.90
0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Power Comparison

π

P
ow
er

Figure 7: FDR and Power comparisons: the 3D cubic pattern.

6 Applications

This section applies LAWS to identify 2D spatial clusters (Section 6.1) and signal patterns in

3D image data (Section 6.2). LAWS has several advantages over existing structure–adaptive

testing methods. For example, SABHA requires that the hypotheses can be divided into

groups or should be ordered as a fixed sequence, which are not always feasible in 2D and

3D spatial applications. By contrast, LAWS constructs weights based on the distance

between spatial locations (4.2) and can easily handle higher dimensional spatial settings.

Unlike the STAR procedure (Lei et al., 2017) which requires that the spatial region must

be contiguous and convex, LAWS is applicable to a wider types of settings where the local

sparsity patterns are heterogeneous. We present two examples to show that LAWS is more

accurate and effective in identifying and recovering specific patterns of interest in analysis

of 2D and 3D image data.

6.1 The 2D setting with spatial clusters

We simulate data on a 200 × 200 lattice. The signals of interest form two spatial clusters

respectively with donut and square shapes. The observations follow the random mixture
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model (5.1), where θ(s) = 1 if s is within the donut or square and θ(s) = 0 otherwise. We

first obtain π̂(s) using (4.5), where ‖s − s′‖ is calculated as the usual Euclidean distance.

We then obtain two-sided p-values and finally apply both BH and LAWS to the simulated

data set. From the first to last row, we vary the signal strength from 2.0 to 3.0. The true

states, and the rejected locations by BH and LAWS are respectively displayed from Column

1 to Column 3.

We can see that LAW is more powerful than BH in uncovering the underlying truth.

Both spatial patterns, namely the donut and square, can be more easily identified based on

the results of LAWS. The key idea is that π̂(s) tend to be very large in the neighborhood

of clustered signals (yellow areas) due to the strong spatial correlations. Therefore the p-

values in these neighborhood are upweighted via data-driven weights. We conclude that by

exploiting the local sparsity structures, LAWS is more effective in rejecting the hypotheses

in regions where signals appear in clusters. This property is in particular attractive in

spatial data analysis.

6.2 The 3D setting: application to fMRI data

We further illustrate the LAWS procedure through a magnetic resonance imaging (MRI)

data for a study of attention deficit hyperactivity disorder (ADHD). The dataset is available

at http://neurobureau.projects.nitrc.org/ADHD200/Data.html. The images were pro-

duced by the ADHD-200 Sample Initiative, then preprocessed by the Neuro Bereau.

We first reduce the resolution of MRI images from 256 × 198 × 256 to 30 × 36 × 30

(Li and Zhang, 2017) by aggregating the corresponding pixels into blocks. This helps the

analysis in several ways. First, the aggregation of pixels not only increases the signal to

noise ratio but also effectively avoids misalignments of brain regions. Second, the p-values,

which are calculated based on normal approximations, should satisfy the required accuracy

needed in the large p small n paradigm (Fan et al., 2007; Liu and Shao, 2010; Chernozhukov

et al., 2017). The downsizing helps to increase the precision of the approximations. Finally,

the aggregation can effectively eliminate noises and make it easier to visualize interesting

spatial patterns.

The dataset consists of 931 subjects, among whom 356 are combined ADHD subjects

and 575 are normal controls. We conduct two-sample t-tests to compare the two groups
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Figure 8: Spatial FDR Analysis in 2D setting. LAWS is more effective in revealing the
donut and square shapes by up-weighting the p-values in the regions where signal appear
in clusters.
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and use normal approximation to obtain the p-values. Finally, we apply LAWS and BH

procedures to identify brain regions that exhibit significant differences between subjects

with and without ADHD.

(a) LAWS (b) BH

(c) LAWS (d) BH

Figure 9: Significant brain regions (yellow) after applying LAWS (left) and BH (right),
view with azimuth and elevation angles (−35,−65) on top row and (35,−80) on bottom
row. FDR level α = 0.05.

Figure 9 displays the testing results from two different angles of the 3D image, with

FDR level equal to 0.05. The significant brain regions identified by BH are a subset of those

identified by LAWS. To be more specific, the LAWS procedure identifies 538 regions, while

BH recovers 349. The graph further shows that LAWS has superior power performance
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over BH in identifying spatial signals.

7 Discussions

This paper develops a new locally-adaptive weighting approach that incorporates the spatial

structure into statistical inference. It provides a unified framework for a broad range of

spatial multiple testing problems and is fully data-driven. We show that LAWS controls

the FDR asymptotically under dependence and outperforms existing methods in power.

LAWS is powerful yet simple. It is capable of adaptively learning the sparse structure

of the underlying spatial process without prior knowledge. The spatial locations are viewed

as auxiliary variables for providing important structural information to assist inference.

However, as explained in Section 3.1 of the paper, there are two pieces of information that

could potentially be useful in spatial setting: the varying sparsity structure that we have

considered, and the varying distributional information that we have replaced by individual

p-values. Such replacement may lead to certain information loss which requires further

investigation. The estimation of the distributional information is challenging and compu-

tationally intensive. Substantial work is needed to extend existing methods to the spatial

setting; such analysis is beyond the scope of the current paper. The development of more

powerful weighting strategies to incorporate other types of side information is an interesting

and important direction for future research.
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Supplementary Material for “LAWS: A Locally Adaptive

Weighting and Screening Approach To Spatial Multiple

Testing”

We first prove the main results in Section A. Additional explanations for the variance-

bias tradeo↵ in choosing ⌧ and Equation (3.6) are provided in Sections B and C, respectively.

A Proofs of Main Results

A.1 Proof of Theorem 1

Proof: Note that

Qw(t) =

P
s2S(1� ⇡(s))t

P
s2S(1� ⇡(s))t+

P
s2S(1�⇡(s))P

s2S ⇡(s)

P
s2S[⇡(s)G1{w(s)t|s}]

,

and

Q1(t) =

P
s2S(1� ⇡(s))tP

s2S(1� ⇡(s))t+
P

s2S[⇡(s)G1{t|s}]

Because t ! G1(t|s) is concave and x ! G1(t/x|s) is convex for mins2Sw�1(s)  x 

maxs2Sw�1(s), together with the condition that
P

s2S ⇡(s)P
s2S(1�⇡(s))  1, we have

P
s2S(1� ⇡(s))P

s2S ⇡(s)

X

s2S
⇡(s)G1{w(s)t|s} =

P
s2S(1� ⇡(s))P

s2S ⇡(s)

X

s2S
⇡(s)G1{t/w

�1(s)|s}

�

X

s2S
(1� ⇡(s))G1

 
t

P
s2S

⇣
⇡(s)P
s2S ⇡(s)

w�1(s)
⌘
!

=
X

s2S
(1� ⇡(s))G1

 P
s2S ⇡(s)P

s2S(1� ⇡(s))
t

!

�

X

s2S
⇡(s)G1(t|s).

Thus, take t = t1
OR

, we have

Qw(t
1
OR)  Q1(t

1
OR)  ↵.

1



Hence, we have tw
OR

� t1
OR

, which yields that

 w(t
w

OR) �  w(t
1
OR) �  1(t

1
OR).

This concludes the proof of Theorem 1.

A.2 Proof of Proposition 1

Proof: Note that, by the definition of vh(s, s0),

1� ⇡̂⌧ (s) =

P
s02T⌧

vh(s, s0)

(1� ⌧)
P

s02S vh(s, s
0)

=

P
s02T⌧

Kh(s� s0)

(1� ⌧)
P

s02SKh(s� s0)
.

Thus, uniformly for all s 2 S, we have

E
⇣ X

s02T⌧

Kh(s� s0)
⌘

= E
⇣X

s02S
[Kh(s� s0)I{p(s0) > ⌧}]

⌘

=
X

s02S
[Kh(s� s0)P{p(s0) > ⌧}].

Under the conditions of the proposition, the eigenvalues of the Hessian matrix P(2)(p(s) >

⌧) 2 Rd⇥d are bounded from above and below, namely, we have �C  �min(s)  �max(s) 

C, for all s 2 S. Furthermore, ⇡⌧ (s) is bounded, and thus the entries of the first derivative

vector are also bounded. Hence, by multivariate Taylor expansion, we have

Z

S

Kh(s� s0)P(p(s0) > ⌧)ds0

= P(p(s) > ⌧)

Z

S

Kh(s� s0)ds0 + vT

Z

S

s0 � s

h
K(

s� s0

h
)ds0

+
h2

2
O(1)

Z

Rd
xTxK(x)dx+ o(h2),

where v = (v1, . . . , vd)T satisfies vj = O(1) for j = 1, . . . , d. It follows that, as S ! S in the

summation
P

s02S,

E(1� ⇡̂⌧ (s)) !

R
S
Kh(s� s0)P(p(s0) > ⌧)ds0

(1� ⌧)
R
S
Kh(s� s0)ds0

.
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Thus, we have, uniformly for all s 2 S, there exists some constant c > 0,

[E{⇡̂⌧ (s)}� ⇡⌧ (s)]2  c
⇣
vT

Z

S

s0 � s

h
K(

s� s0

h
)ds0

.Z

S

Kh(s� s0)ds0
⌘2

+ch4
⇣Z

xTxK(x)dx
.Z

S

Kh(s� s0)ds0
⌘2

. (A.2)

We next show the variance term. Note that, for some constant c0 > 1,

Var
⇣ X

s02T⌧

Kh(s� s0)
⌘

= Var
⇣X

s02S
[Kh(s� s0)I{p(s0) > ⌧}]

⌘

 c0
X

s02S
[K2

h(s� s0)P{p(s0) > ⌧}(1� P{p(s0) > ⌧})].

Thus, as S ! S in the summation
P

s02S, we have,

Var(1� ⇡̂⌧ (s))  c00|S|�1

R
S
K2

h
(s� s0)P{p(s0) > ⌧}(1� P{p(s0) > ⌧})ds0

[(1� ⌧)
R
S
Kh(s� s0)ds0]2

 c00|Sh|�1(1� ⌧)�2
Z

K2(x)dx
.⇣Z

S

Kh(s� s0)ds0
⌘2

 c000|Sh|�1(1� ⌧)�2
.⇣Z

S

Kh(s� s0)ds0
⌘2

, (A.3)

for some constants c00, c000 > 0, where the last inequality comes from the fact that K(·) is

positive and bounded. Combining (A.2) and (A.3) and letting |S| ! 1 and thus h !

0, by the conditions that the domain S is finite,
R
Rd K(t)dt = 1,

R
Rd tK(t)dt = 0 and

R
Rd tTtK(t)dt < 1, Proposition 1 is proved.

A.3 Proof of Theorem 2

Proof: We first introduce the following procedure in order to prove the theorem.

Procedure 1 Calculate the weights as

w̃(s) =

(
X

s2S

⇡⌧ (s)

1� ⇡⌧ (s)

)
�1

m⇡⌧ (s)

1� ⇡⌧ (s)
, s 2 S (A.4)

For hypothesis H0(s) : ✓(s) = 0, define adjusted p-values as p̃w(s) = min{p(s)/w̃(s), 1}.

Apply the BH procedure at level ↵ to all adjusted p-values.

The following lemma develops the theoretical property of Procedure 1 for each realiza-

3



tion of {✓(s), s 2 S}.

Lemma 1 Under Conditions (A3) and (A5), and assume that, there exists a su�ciently

small constant ⇠ > 0, such that ⇡⌧ (s) 2 [⇠, 1� ⇠], then we have

lim
m!1

FDRProcedure1  ↵, and lim
m!1

P(FDPProcedure1  ↵+ ✏) = 1.

for any ✏ > 0.

We remark here that, from the proof of Lemma 1, by replacing ⇡⌧ (s) by ⇡̂(s) in Procedure

1, Lemma 1 still holds under the conditions of Proposition 1.

Now we prove Theorem 2. We first note that, by the proof of Lemma 3 in Xia et al.

(2019), Algorithm 1 is equivalent to the following algorithm.

Algorithm 2 An equivalent LAWS Procedure

1: Estimate the FDP by

[FDPŵ(t) =

P
s2S ⇡̂(s)t

max{
P

s2S I(p
ŵ(s)  t), 1}

(A.5)

2: Obtain the data-driven threshold t̂w = supt

n
t : [FDPŵ(t)  ↵

o
.

3: Reject H0(s) if pŵ(s)  t̂w.

Thus, in the oracle case when {⇡(s), s 2 S} are known, the corresponding oracle FDP

and its conservative estimator can be equivalently written by

FDPw(t) =

P
s2H0

I(pw(s)  t)

max{Rw(t), 1}
, [FDPw(t) =

P
s2S ⇡

⌧ (s)t

max{Rw(t), 1}
, (A.6)

where Rw(t) =
P

s2S I(p
w(s)  t) denotes the oracle total number of rejections with the

threshold t, and w(s) = ⇡
⌧ (s)

1�⇡⌧ (s) . Define the oracle threshold tw = supt

n
t : [FDPw(t)  ↵

o
.

The oracle decision rule �w(t) is then equivalent to reject H0(s) if pw(s)  tw, and we have

that FDPw(tw) = FDP[�w{pw(kw)}].

Based on the definition of tw, to prove Theorem 2, it is enough of show that, uniformly

for all t � tw, �����

P
s2S[I(p

w(s)  t, ✓(s) = 0)� c⇡(s)t]P
s2S ⇡(s)t

����� ! 0
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in probability, for some constant 0 < c  1.

Note that the weights in the oracle procedure and the weights in Procedure 1 are pro-

portional. Thus the adjusted p-values {pw(s), i = 1, . . . ,m} and {p̃w(s), i = 1, . . . ,m} have

exactly the same order, with p̃w(s) = pw(s)m�1P
s2S

⇡
⌧ (s)

1�⇡⌧ (s) . Also note that Procedure 1

is equivalent to find

t̃w = sup
t

{t :
mt

max{
P

s2S I(p̃
w(s)  t), 1}

 ↵},

and reject the hypothesis H0(s) if p̃w(s) < t̃w. By letting t̃ = m(
P

s2S
⇡
⌧ (s)

1�⇡⌧ (s))
�1t, we have

that

mt

max{
P

s2S I(p̃
w(s)  t), 1}

=

P
s2S

⇡
⌧ (s)

1�⇡⌧ (s) t̃

max{
P

s2S I(p
w(s)  t̃), 1}

,

and thus the threshold for p̃w(s) in Procedure 1 is

t̃w = sup
t̃

{t̃ :

P
s2S

⇡
⌧ (s)

1�⇡⌧ (s) t̃

max{
P

s2S I(p
w(s)  t̃), 1}

 ↵} ·m�1
X

s2S

⇡⌧ (s)

1� ⇡⌧ (s)
.

Hence the threshold for pw(s) in Procedure 1 is

t1w = sup
t

{t :

P
s2S

⇡
⌧ (s)

1�⇡⌧ (s) t

max{
P

s2S I(p
w(s)  t), 1}

 ↵}.

Comparing the definition of tw and t1w, it is easily to see that t1w  tw. By the proofs

of Lemma 1, we have that, the threshold for the z-values corresponding to threshold of

p-values: t1w, is no larger than tm as defined in the proof of Lemma 1. We further learn

from the proofs of Lemma 1 that, for every realization of {✓(s), s 2 S}, uniformly for all

t � t1w, as m ! 1,

�����

P
✓(s)=0[I(p

w(s)  t)� P(pw(s)  t|✓(s) = 0)]
P

✓(s)=0 P(pw(s)  t|✓(s) = 0)

����� ! 0

in probability. Note that, by Condition (A4),

�����

P
✓(s)=0 P(pw(s)  t|✓(s) = 0)�

P
s2S P(pw(s)  t, ✓(s) = 0)

P
s2S P(pw(s)  t, ✓(s) = 0)

����� ! 0
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in probability, where {✓(s), s 2 S} in the above equation represent random variables as

modeled in (2.3). Thus we have

�����

P
s2S[I(p

w(s)  t, ✓(s) = 0)� P(pw(s)  t, ✓(s) = 0)]P
s2S P(pw(s)  t, ✓(s) = 0)

����� ! 0

in probability. Note that

X

s2S
P(pw(s)  t, ✓(s) = 0) =

X

s2S
P(pw(s)  t|✓(s) = 0)P(✓(s) = 0)

=
X

s2S


⇡⌧ (s)

1� ⇡⌧ (s)
t(1� ⇡(s))

�


X

s2S
⇡⌧ (s)t.

Thus we have that, uniformly for all t � t1w, there exists a constant 0 < c  1, as m ! 1,

�����

P
s2S[I(p

w(s)  t, ✓(s) = 0)� c⇡(s)t]P
s2S ⇡(s)t

����� ! 0

in probability. This concludes the proof of Theorem 2.

A.4 Proof of Theorem 3

Proof: As shown in the proof of Theorem 2, the data-driven decision rule �ŵ(t) is equivalent

to reject H0(s) if pŵ(s)  tŵ, and we have that FDPŵ(tŵ) = FDP[�ŵ{pŵ(kŵ)}].

Similarly as the proof of Theorem 2, based on the proofs of Lemma 1 and Condition

(A4), we have that

�����

P
s2S(I(p

ŵ(s)  t, ✓(s) = 0)� P(pŵ(s)  t, ✓(s) = 0))P
s2S P(pŵ(s)  t, ✓(s) = 0)

����� ! 0

in probability, uniformly for all t � t1w, where t
1
w is defined as in the proof of Theorem 2, by

replacing ⇡⌧ (s) by ⇡̂(s) in Procedure 1. Recall that ⇡⌧ (s) = 1� P(p(s)>⌧)
1�⌧

. and that the bias

of 1 � ⇡⌧ (s) is always non-negative. By Proposition 1 and the fact that ⇡⌧ (s) 2 [⇠, 1 � ⇠]

for some su�ciently small constant ⇠ > 0,

X

s2S
P(pŵ(s)  t, ✓(s) = 0) =

X

s2S
P(pŵ(s)  t|✓(s) = 0)P(✓(s) = 0)
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= (1 + o(1))
X

s2S

⇢
⇡⌧ (s)

1� ⇡⌧ (s)
t(1� ⇡(s))

�

 (1 + o(1))
X

s2S

⇢
⇡⌧ (s)

1� ⇡⌧ (s)
t(1� ⇡⌧ (s))

�

= (1 + o(1))
X

s2S
⇡⌧ (s)t,

where o(1) in the above equations are in the limit of S ! S. Thus, based on Proposition

1, we have that, uniformly for all t � t1w, there exists a constant 0 < c  1 such that

�����

P
s2S(I(p

ŵ(s)  t, ✓(s) = 0)� c⇡̂(s)t)P
s2S c⇡̂(s)t

����� ! 0

in probability. Namely, the data-driven procedure provides a more conservative FDR and

FDP control asymptotically. This concludes the proof of Theorem 3.

A.5 Proof of Lemma 1

We now prove Lemma 1 below. We let pw(s) = p̃w(s) in the proof of this lemma for notation

simplicity. We arrange {s 2 S} in any order {s1, . . . , sm} and note that
P

✓(si)=0 P(zwi � t)

is equivalent to
P

✓(si)=0 P(zwi � t|✓(si) = 0) and
P

i=1,...,m P(zw
i
� t, ✓(si) = 0) for a given

realization of the hypotheses, where zw
i
= ��1(1�pw(si)/2), for i = 1, . . . ,m. We first show

that by applying BH to the weighted p-values controls FDR exactly under the independence

of zw
i
. We then prove that, in the dependent case, it performance asymptotically the same

as case when zw
i
are independent.

Let tm = (2 logm� 2 log logm)1/2. By Condition (A5), we have

X

✓(si)=1

I{|zi| � (c logm)1/2+⇢/4
} � {1/(⇡1/2↵) + �}(logm)1/2,

with probability going to one, for some constant c > 0. Recall that we have w(s) =
nP

s2S
⇡
⌧ (s)

1�⇡⌧ (s)

o
�1

m⇡
⌧ (s)

1�⇡⌧ (s) and ⇡⌧ (s) 2 [⇠, 1�⇠]. Thus, for those indices i 2 H1 (equivalently

✓(si) = 1) such that |zi| � (c logm)1/2+⇢/4, we have

pw(si) = p(si)/w(si)  (1� �((c logm)1/2+⇢/4))/w(si) = o(m�M ),

7



for any constant M > 0. Thus we have

X

1im

I{zwi � (2 logm)1/2} � {1/(⇡1/2↵) + �}(logm)1/2,

with probability going to one. Hence, with probability tending to one, we have

2mP
1im

I{zw
i
� (2 logm)1/2}

 2m{1/(⇡1/2↵) + �}�1(logm)�1/2.

Because 1 � �(tm) ⇠ 1/{(2⇡)1/2tm} exp(�t2m/2), it su�ces to show that, uniformly in

0  t  tm, there exists a constant 0 < c  1, such that

�����

P
✓(si)=0 I(z

w

i
� t)� cm0G(t)

cm0G(t)

����� ! 0, (A.7)

in probability, where G(t) = 2(1� �(t)).

We first consider the case when zw
i

are independent with each other. For i = 1, . . . ,m,

the ideal choice of the threshold to for zw
i
in order to control the FDR is that

to = inf{t � 0,

P
✓(si)=0 I(z

w

i
� t)

P
1im

I(zw
i
� t)

 ↵}.

It is easy to show that, under independence of zw
i
,

�����

P
✓(si)=0 I(z

w
i
� t)�

P
✓(si)=0 P(zwi � t)

P
✓(si)=0 P(zwi � t)

����� ! 0, as m ! 1.

Thus a good estimate of to can be written by

t̂o = inf{t � 0,

P
✓(si)=0 P(zwi � t)

P
1im

I(zw
i
� t)

 ↵}. (A.8)

Since the spatial locations {s 2 S} does not change the null distribution of p-values, ac-

cording to Theorem 1 in Genovese et al. (2006), and by the fact that the original p-values

of the null hypotheses are uniformly distributed, the procedure by applying BH procedure

8



on the weighted p-values controls the FDR at level ↵m0/m. That is, if

k = max{i : pw(i)  i↵/m},

where pw(1)  · · ·  pw(m) are the ordered weighted p-values, and we reject all k hypotheses

associated with pw(1), . . . , p
w

(k), then we have

E
 P

✓(s)=0 I(p
w(s)  pw(k))

max{
P

1im
I(pw(s)  pw(k)), 1}

!
 ↵m0/m. (A.9)

By the definition of zw
i
, it is equivalent to reject all k hypotheses with

2m(1� �(zw(i)))

i
 ↵.

That is to find

t̂ = inf{t � 0,
2m(1� �(t))P
1im

I(zw
i
� t)

 ↵}, (A.10)

and reject all hypotheses with zw
i
� t̂. This yields that

E
 P

✓(si)=0 I(z
w

i
� t̂)

P
1im

I(zw
i
� t̂)

!
 ↵m0/m.

Hence, this procedure is more conservative than rejecting all hypotheses with zw
i

� t̂o as

defined in (A.8). Thus, there exists a constant 0 < c  1, such that, uniformly in 0  t  tm,

�����

P
✓(si)=0 P(zwi � t)� cm0G(t)

cm0G(t)

����� ! 0. (A.11)

Under Assumption (A1), that is, when the weighted z-values are weakly dependent with

each other, by the proof of Theorem 1 in Xia et al. (2019) and the fact that

��1
{1� [1� �{(c1 logm+ c2 log logm)1/2}]/w(si)} = c1 logm+ c2 log logm+ c3,

9



for some constant c1, c2, c3, we have,

�����

P
✓(si)=0(I(z

w
i
� t)� P(zw

i
� t))

P
✓(si)=0 P(zwi � t)

����� ! 0, (A.12)

in probability, uniformly in 0  t  tm. By (A.11) and (A.12), (A.7) is proved and thus

Procedure 1 controls FDR and FDP asymptotically under dependency. This concludes the

proof of Lemma 1.

B Explanation of the bias-variance tradeo↵ in choosing ⌧

There is a bias-variance tradeo↵ in the choice of ⌧ in the proposed estimator ⇡̂⌧ (s). It is

easy to see that a large ⌧ will simultaneously reduce the bias (desirable) and decrease the

sample size (undesirable).

To reduce the bias in the proposed estimator ⇡̂⌧ (s), one needs to choose a relatively

large ⌧ to ensure the “purity” of T (⌧) = {s 2 S : p(s) > ⌧}, i.e. we wish to have a

screening set where majority of the cases come from the null. Although the common choice

of ⌧ = 0.5 su�ces in many situations, we propose a new scheme to carefully calibrate ⌧ that

is adaptive to the observed data. Let ⌧ be the threshold determined by the BH algorithm

with ↵ = 0.9. Then roughly speaking, in the subset T̃ (⌧) = {s 2 S : p(s)  ⌧}, 90% of the

cases come from the null (e.g. the expected proportion of false positives made by BH). It is

anticipated that in the remaining set T (⌧) = {s 2 S : p(s) > ⌧}, which is used to construct

our estimator, an overwhelming proportion(more than 90%) of the cases should come from

the null. In the simulation (say the 2D rectangle case), ⌧ roughly ranges from 0.38 to 0.47

when we run BH algorithm at ↵ = 0.9. This data-driven scheme ensures the purity of the

screening set while maintaining a larger sample size compared to the standard choice of

⌧ = 0.5.

C Explanation of Equation (3.6) in Section 3.3

In this section we justify the approximation in Equation (3.6). Denote ���v(t) = {�v(s, t) :

s 2 S} a class of testing rules, where �v(s, t) = I{pv(s)  t}, v(s) is the pre-specified weight

and pv(s) = min
n

p(s)
v(s) , 1

o
. Denote by V (t) =

P
s2H0

�v(s, t) and R(t) =
P

s2S �
v(s, t). We

10



show that Qv(t) provides a good approximation to the actual FDR level under the following

condition:

Var [R(t)/E{R(t)}] = o(1). (C.13)

We remark here that for a fixed threshold t > 0 and v(s) 2 [⇠, 1 � ⇠] for a su�ciently

small constant ⇠ > 0, Condition (C.13) is satisfied if Var
�P

s2S I{p(s)  t}/m
 

= o(1).

This is a weaker condition compared to (A2) in Section 4.1. Hence the condition can be

fulfilled by both BH and LAWS under the general class of dependence structures being

considered in this article.

Proposition 2 Assume that Condition (C.13) holds, then we have

FDR{���v(t)} = Qv(t) + o(1) =
E
�P

s2H0
�v(s, t)

 

E
�P

s2H0
�v(s, t)

 
+ E

�P
s2H1

�v(s, t)
 + o(1).

Proof of Proposition 2: Note that R(t) = 0 implies V (t) = 0, hence we have

FDR{���v(t)} = E

V (t)

R(t)
I{R(t) > 0}

�
, and Qv(t) =

E [V (t)I{R(t) > 0}]

E {R(t)}
.

It follows that

|FDR{���v(t)}�Qv(t)|  E
����
V (t)

R(t)
�

V (t)

E {R(t)}

���� I{R(t) > 0}

�

= E
����
V (t)

R(t)

R(t)� E {R(t)}

E {R(t)}

���� I{R(t) > 0}

�
.

Note that V (t) is always no larger than R(t), we have

|FDR{���v(t)}�Qv(t)|  Var1/2 [R(t)/E{R(t)}] = o(1),

which proves the proposition.
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