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Abstract

Standardization has been a widely adopted practice in multiple testing, for it takes

into account the variability in sampling and makes the test statistics comparable across

di↵erent study units. However, despite conventional wisdom to the contrary, we show

that there can be a significant loss in information from basing hypothesis tests on stan-

dardized statistics rather than the full data. We develop a new class of heteroscedasticity–

adjusted ranking and thresholding (HART) rules that aim to improve existing methods

by simultaneously exploiting commonalities and adjusting heterogeneities among the

study units. The main idea of HART is to bypass standardization by directly incor-

porating both the summary statistic and its variance into the testing procedure. A

key message is that the variance structure of the alternative distribution, which is

subsumed under standardized statistics, is highly informative and can be exploited to

achieve higher power. The proposed HART procedure is shown to be asymptotically

valid and optimal for false discovery rate (FDR) control. Our simulation results demon-

strate that HART achieves substantial power gain over existing methods at the same

FDR level. We illustrate the implementation through a microarray analysis of myeloma.
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1 Introduction

In a wide range of modern scientific studies, multiple testing frameworks have been routinely

employed by scientists and researchers to identify interesting cases among thousands or even

millions of features. A representative sampling of settings where multiple testing has been

used includes: genetics, for the analysis of gene expression levels (Tusher et al., 2001;

Dudoit et al., 2003; Sun and Wei, 2011); astronomy, for the detection of galaxies (Miller

et al., 2001); neuro-imaging, for the discovery of di↵erential brain activity (Pacifico et al.,

2004; Schwartzman et al., 2008); education, to identify student achievement gaps (Efron,

2008a); data visualization, to find potentially interesting patterns (Zhao et al., 2017); and

finance, to evaluate trading strategies (Harvey and Liu, 2015).

The standard practice involves three steps: reduce the data in di↵erent study units

to a vector of summary statistics Xi, with associated standard deviation �i; standardize

the summary statistics to obtain z-values, Zi = Xi/�i; and finally, order the z-values,

or associated p-values, and apply a threshold to keep the rate of Type I error below a

pre-specified level. Classical approaches concentrated on setting a threshold that controls

the family-wise error rate (FWER), using methods such as the Bonferroni correction or

Holm’s procedure (Holm, 1979). However, the FWER criterion becomes infeasible once the

number of hypotheses under consideration grows to thousands. The seminal contribution of

Benjamini and Hochberg (1995) proposed replacing the FWER by the false discovery rate

(FDR) and provided the BH algorithm for choosing a threshold on the ordered p-values

which, under certain assumptions, is guaranteed to control the FDR.

While the BH procedure o↵ers a significant improvement over classical approaches, it

only controls the FDR at level (1� ⇡)↵, where ⇡ is the proportion of non-nulls, suggesting

that its power can be improved by incorporating an adjustement for ⇡ into the procedure.

Benjamini and Hochberg (2000), Storey (2002) and Genovese and Wasserman (2002) pro-

posed to first estimate the non-null proportion by ⇡̂ and then run BH at level ↵/(1 � ⇡̂).

Efron et al. (2001) proposed the local false discovery rate (Lfdr), which incorporates, in ad-

dition to the sparsity parameter ⇡, information about the alternative distribution. Sun and

Cai (2007) proved that the z-value optimal procedure is an Lfdr thresholding rule and that

this rule uniformly dominates the p-value optimal procedure in Genovese and Wasserman
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(2002). The key idea is that the shape of the alternative could potentially a↵ect the rejec-

tion region but the important structural information is lost when converting the z-value to

p-value. For example, when the means of non-null e↵ects are more likely to be positive than

negative, then taking this asymmetry of the alternative into account increases the power.

However, the sign information is not captured by conventional p-value methods, which only

consider information about the null.

Although a wide variety of multiple testing approaches have been proposed, they almost

all begin with the standardized data Zi (or its associated p-value, Pi). In fact, in large-scale

studies where the data are collected from intrinsically diverse sources, the standardization

step has been upheld as conventional wisdom, for it takes into account the variability of the

summary statistics and suppresses the heterogeneity – enabling one to compare multiple

study units on an equal footing. For example, in microarray studies, Efron et al. (2001)

first compute standardized two-sample t-statistics for comparing the gene expression levels

across two biological conditions and then convert the t-statistics to z–scores, which are

further employed to carry out FDR analyses. Binomial data is also routinely standard-

ized by rescaling the number of successes Xi by the number of trials ni to obtain success

probabilities p̂i = Xi/ni and then converting the probabilities to z-scores (Efron, 2008a,b).

However, while standardization is an intuitive, and widely adopted, approach, we argue in

this paper that there can be a significant loss in information from basing hypothesis tests

on Zi rather than the full data (Xi,�i)1. This observation, which we formalize later in the

paper, is based on the fact that the power of tests can vary significantly as � changes, but

this di↵erence in power is suppressed when the data is standardized and treated as equiva-

lent. In the illustrative example in Section 2.2, we show that by accounting for di↵erences

in � an alternative ordering of rejections can be obtained, allowing one to identify more

true positives at the same FDR level.

This article develops a new class of heteroscedasticity-adjusted ranking and thresholding

(HART) rules for large-scale multiple testing that aim to improve existing methods by

simultaneously exploiting commonalities and adjusting heterogeneities among the study

1Unless otherwise stated, the term “full data” specifically refers to the pair (Xi,�i) in this article.
In practice, the process of deriving the pair (Xi,�i) from the original (full) data could also su↵er
from information loss, but this point is beyond the scope of this work; see the rejoinder of Cai et al.
(2019) for related discussions.
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units. The main strategy of HART is to bypass standardization by directly incorporating

(Xi,�i) into the testing procedure. We adopt a two-step approach. In the first step a new

significance index is developed by taking into account the alternative distribution of each

Xi conditioned on �i; hence HART avoids power distortion. Then, in the second step the

significance indices are ordered and the smallest ones are rejected up to a given cuto↵. We

develop theories to show that HART is optimal for integrating the information from both

Xi and �i. Numerical results are provided to confirm that in finite sample settings HART

controls the FDR and uniformly dominates existing methods in terms of power.

We are not the first to consider adjusting for heterogeneity. Ignatiadis et al. (2016)

and Lei and Fithian (2018) mentioned the possibility of using the p-value as a primary

significance index while employing �i as side-information to weight or pre-order hypotheses.

Earlier works by Efron (2008a) and Cai and Sun (2009) also suggest grouping methods to

adjust for heterogeneous variances in data. However, the variance issue is only briefly

mentioned in these works and it is unclear how a proper pre–ordering or grouping can be

created based on �i. It is important to note that the ordering or grouping based on the

magnitudes of �i will not always be informative. Our numerical results show that ordering

by �i is suboptimal, even potentially leading to power loss compared to methods that utilize

no side information. In contrast with existing works, we explicitly demonstrate the key role

that �i plays in characterizing the shape of the alternative in simultaneous testing (Section

2.2). Moreover, HART provides a principled and optimal approach for incorporating the

structural information encoded in �i. We prove that HART guarantees FDR control and

uniformly improves upon all existing methods in terms of asymptotic power.

The findings are impactful for three reasons. First, the observation that standardization

can be ine�cient has broad implications since, due to inherent variabilities or di↵ering

sample sizes between study units, standardized tests are commonly applied to large-scale

heterogeneous data to make di↵erent study units comparable. Second, our finding enriches

the recent line of research on multiple testing with side and structural information (e.g. Cai

et al., 2019; Li and Barber, 2019; Xia et al., 2019, among others). In contrast with these

works that have focused on the usefulness of sparsity structure, our characterization of the

impact of heteroscedasticity, or more concretely the shape of alternative distribution, is new.

Finally, HART convincingly demonstrates the benefits of leveraging structural information
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in high-dimensional settings when the number of tests is in the thousands or more.

The rest of the paper is organized as follows. Section 2 reviews the standard multiple

testing model and provides a motivating example that clearly illustrates the potential power

loss from standardization. Section 3 describes our HART procedure and its theoretical

properties. Section 4 contains simulations, and Section 5 demonstrates the method on a

microarray study. We conclude the article with a discussion of connections to existing

work and open problems. Technical materials, proofs and additional numerical results are

provided in the Appendix.

2 Problem Formulation and the Issue of Standardizing

This section first describes the problem formulation and then discusses an example to

illustrate the key issue.

2.1 Problem formulation

Let ✓i denote a Bernoulli(⇡) variable, where ✓i = 0/1 indicates a null/alternative hypoth-

esis, and ⇡ = P (✓i = 1) is the proportion of nonzero signals coming from the alternative

distribution. Suppose the summary statistics X1, . . . , Xm are normal variables obeying

distribution

Xi|µi,�
2
i

ind⇠ N(µi,�
2
i ), (2.1)

where µi follows a mixture model with a point mass at zero and �i is drawn from an

unspecified prior:

µi
iid⇠ (1� ⇡)�0(·) + ⇡gµ(·), �2

i
iid⇠ g�(·). (2.2)

In (2.2), �0(·) is a Dirac delta function indicating a point mass at 0 under the null hypothesis,

while gµ(·) signifies that µi under the alternative is drawn from an unspecified distribution

which is allowed to vary across i. In this work, we focus on a model where µi and �i are not

linked by a specific function. The more challenging situation where �i may be informative

for predicting µi is briefly discussed in Section 6.2.

Following tradition in dealing with heteroscedasticity problems (e.g. Xie et al., 2012;

Weinstein et al., 2018), we assume that �i are known. This simplifies the discussion and
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enables us to focus on key ideas. For practical applications, we use a consistent estimator

of �i. The goal is to simultaneously test m hypotheses:

H0,i : µi = 0 vs. H1,i : µi 6= 0; i = 1, . . . ,m. (2.3)

The multiple testing problem (2.3) is concerned with the simultaneous inference of ✓✓✓ =

{✓i = I(µi 6= 0) : i = 1, . . . ,m}, where I(·) is an indicator function. The decision rule is

represented by a binary vector � = (�i : 1  i  m) 2 {0, 1}m, where �i = 1 means that

we reject H0,i, and �i = 0 means we do not reject H0,i. The false discovery rate (FDR)

(Benjamini and Hochberg, 1995), defined as

FDR = E

 P
i(1� ✓i)�i

max{
P

i �i, 1}

�
, (2.4)

is a widely used error criterion in large-scale testing problems. A closely related criterion

is the marginal false discovery rate

mFDR =
E {
P

i(1� ✓i)�i}
E (
P

i �i)
. (2.5)

The mFDR is asymptotically equivalent to the FDR for a general set of decision rules

satisfying certain first- and second-order conditions on the number of rejections (Basu et al.,

2018), including p–value based tests for independent hypotheses (Genovese and Wasserman,

2002) and weakly dependent hypotheses (Storey et al., 2004). We shall show that our

proposed data-driven procedure controls both the FDR and mFDR asymptotically; the

main consideration of using the mFDR criterion is to derive optimality theory and facilitate

methodological developments.

We use the expected number of true positives ETP = E (
Pm

i=1 ✓i�i) to evaluate the

power of an FDR procedure. Other power measures include the missed discovery rate

(MDR, Taylor et al., 2005), average power (Benjamini and Hochberg, 1995; Efron, 2007)

and false negative rate or false non-discovery rate (FNR, Genovese and Wasserman, 2002;

Sarkar, 2002). Cao et al. (2013) showed that under the monotone likelihood ratio condition

(MLRC), maximizing the ETP is equivalent to minimizing the MDR and FNR. The ETP

is used in this article because it is intuitive and simplifies the theory. We call a multiple
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testing procedure valid if it controls the FDR at the nominal level and optimal if it has the

largest ETP among all valid FDR procedures.

The building blocks for conventional multiple testing procedures are standardized statis-

tics such as Zi or Pi. Let µ⇤
i = µi/�i. The tacit rationale in conventional practice is that

the simultaneous inference problem

H0,i : µ
⇤
i = 0 vs. H1,i : µ

⇤
i 6= 0; i = 1, . . . ,m, (2.6)

is equivalent to the formulation (2.3); hence the standardization step has no impact on mul-

tiple testing. However, this seemingly plausible argument, which only takes into account

the null distribution, fails to consider the change in the structure of the alternative distri-

bution. Next we present an example to illustrate the information loss and power distortion

from standardizing.

2.2 Data processing and power loss: an illustrative example

The following diagram describes a data processing approach that is often adopted when

performing hypothesis tests:

(Xi,�i) �! Zi =
Xi

�i
�! Pi = 2�(�|Zi|). (2.7)

We start with the full data consisting of Xi and �2
i = V ar(Xi|µi). The data is then

standardized, Zi = Xi/�i, and finally converted to a two-sided p-value, Pi. Typically these

p-values are ordered from smallest to largest, a threshold is chosen to control the FDR, and

hypotheses with p-values below the threshold are rejected.

Here we present a simple example to illustrate the information loss that can occur at each

of these data compression steps. Consider a hypothesis testing setting with H0,i : ✓i = 0

and the data coming from a normal mixture model, where

µi
iid⇠ (1� ⇡)�0 + ⇡�µa , �i

iid⇠ U [0.5, 4]. (2.8)

This is a special case of (2.2), where µi are specifically drawn from a mixture of two point

masses, and where we set µa = 2.
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We examine three possible approaches to controlling the FDR at ↵ = 0.1. In the p-

value approach we reject for all p-values below a given threshold. Note that, when the

FDR is exhausted, this is the uniformly most powerful p-value based method (Genovese

and Wasserman, 2002), so is superior to, for example, the BH procedure. Alternatively, in

the z-value approach we reject for all suitably small P(H0|Zi), which is in turn the most

powerful z-value based method (Sun and Cai, 2007). Finally, in the full data approach

we reject when P(H0|Xi,�i) is below a certain threshold, which we show later is optimal

given Xi and �i. In computing the thresholds, we assume that there is an oracle knowing

the alternative distribution; the formulas for our theoretical calculations are provided in

Section A of the Appendix. For the model given by (2.8) these rules correspond to:

���p = {I(Pi  0.0006) : 1  i  m} = {I(|Zi| � 3.43) : 1  i  m},

���z = {I(P(H0|Zi)  0.24) : 1  i  m} = {I(Zi � 3.13) : 1  i  m},

���full = {I(P(H0|Xi,�i)  0.28) : 1  i  m},

with the thresholds chosen such that the FDR is exactly 10% for all three approaches.

However, while the FDRs of these three methods are identical, the average powers, AP(���) =

1
m⇡E (

Pm
i=1 ✓i�i), di↵er significantly:

AP(�p) = 5.0%, AP(�z) = 7.2%, AP(�full) = 10.5%. (2.9)

To better understand these di↵erences consider the left hand plot in Figure 1, which

illustrates the rejection regions for each approach as a function of Z and �2. In the blue

region all methods fail to reject the null hypothesis, while all methods reject in the black

region. The green region corresponds to the space where the full data approach rejects the

null while the other two methods do not. Alternatively, in the red region both the z-value

and full data methods reject while the p-value approach fails to do so. Finally, in the white

region the full data approach fails to reject while the z-value method does reject.

We first compare ���z and ���p. Let ⇡+ and ⇡� denote the proportions of positive e↵ects

and negative e↵ects, respectively. Then ⇡+ = 0.1 and ⇡� = 0. This asymmetry of the al-

2The p-value method will also reject for large negative values of Z but, to keep the figure readable, we
have not plotted that region.
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Figure 1: Left: Rejection regions for the p-value approach (black line), z-value approach (red line)
and full data approach (green line) as a function of Z and �. Approaches reject for all points above
their corresponding line. Right: Heat map of relative proportions (on log scale) of alternative vs null
hypotheses for di↵erent Z and �. Blue corresponds to lower ratios and purple to higher ratios. The
solid black line represents equal fractions of null and alternative, while the dashed line corresponds
to three times as many alternative as null.

ternative distribution can be captured by ���z, which uses a one-sided rejection region. (Note

that this asymmetric rejection region is not pre-specified but a consequence of theoretical

derivation. In practice ���z can be emulated by an adaptive z-value approach that is fully

data-driven (Sun and Cai, 2007).) By contrast, ���p enforces a two-sided rejection region

that is symmetrical about 0, trading o↵ extra rejections in the region Zi  �3.43 for fewer

rejections in the region where 3.13  Zi  3.43. As all nonzero e↵ects are positive, negative

z-values are highly unlikely to come from the alternative; this accounts for the 2.2% loss

in AP for the p-value method. Next consider ���full vs ���z. The full data approach trades o↵

extra rejections in the green space for fewer rejections in the white space. This may seem

like a sub-optimal trade-o↵ given that the green space is smaller. However, the green space

actually contains many more true alternative hypotheses. Approximately 3.8% of the true

alternatives occur in the green region as opposed to only 0.5% in the white region, which

accounts for the 3.3% higher AP for the full data approach.

At first Figure 1 may appear counterintuitive. Why should we reject for low z-values in

the green region but fail to reject for high z-values in the white region? The key observation
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here is that not all z-values are created equal. In the green region the observed data is far

more consistent with the alternative hypothesis than the null hypothesis. For example,

with Z = 4 and � = 0.5 our observed X is four standard deviations from the null mean

but exactly equal to the alternative mean. Alternatively, while it is true that in the white

region the high z-values suggest that the data are inconsistent with the null hypothesis,

they are also highly inconsistent with the alternative hypothesis. For example, with Z = 4

and � = 2 our observed X is 8, which is four standard deviations from the null mean, but

also three standard deviations from the alternative mean. Given that 90% of observations

come from the null hypothesis, we do not have conclusive evidence as to whether this data

is from the null or alternative. A z-value of 4 with � = 0.5 is far more likely to come from

the alternative hypothesis than is a z-value of 4 with � = 2.

The right hand plot of Figure 1 makes this clear. Here we have plotted (on a log

scale) the relative proportions of alternative vs null hypotheses for di↵erent Z and �. Blue

corresponds to lower ratios and purple to higher ratios. The solid black line represents

equal fractions of null and alternative, while the dashed line corresponds to three times as

many alternative as null. Clearly, for the same z-value, alternative hypotheses are relatively

more common for low � values. Notice how closely the shape of the dashed line maps the

green rejection boundary in the left hand plot, which indicates that the full data method is

correctly capturing the regions with most alternative hypotheses. By contrast, the p-value

and z-value methods fail to correctly adjust for di↵erent values of �.

Figure 2 provides one further way to understand the e↵ect of standardizing the data.

Here we have plotted the density functions of Z under the null hypothesis (black solid) and

alternative hypothesis (red dashed) for di↵erent values of �. The densities have been multi-

plied by the relative probability of each hypothesis occurring so points where the densities

cross correspond to an equal likelihood for either hypothesis. The blue line represents an

observation, which is fixed at Z = 2 in each plot. The alternative density is centered at

Z = 2/� so when � is large the standardized null and alternative are very similar, making

it hard to know which distribution Z = 2 belongs to. As � decreases the standardized al-

ternative distribution moves away from the null and becomes more consistent with Z = 2.

However, eventually the alternative moves past Z = 2 and it again becomes unclear which

distribution our data belongs to. Standardizing means that the null hypothesis is consistent
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Figure 2: Plots of the density functions of Z under the null hypothesis (black solid) and
alternative hypothesis (red dashed) for di↵erent values of �. The blue line represents an
observation at Z = 2.

for all values of �, but the alternative hypothesis can change dramatically as a function of

the standard deviation.

To summarize, the information loss incurred in both steps of data processing (2.7) re-

veals the essential role of the alternative distribution in simultaneous testing. This structure

of the alternative is not captured by the p-value, which is calculated only based on the null.

Our result (2.9) in the toy example shows that by exploiting (i) the overall asymmetry of

the alternative via the z-value and (ii) the heterogeneity among individual alternatives via

the full data, the average power of conventional p-value based methods can be doubled.

2.3 Heteroscadasticity and empirical null distribution

In the context of simultaneous testing with composite null hypotheses, Sun and McLain

(2012) argued that the conventional testing framework, which involves rescaling or stan-

dardization, can become problematic:

“In multiple testing problems where the null is simple (H0,i : µi = 0), the heteroscedasticity in

errors can be removed by rescaling all �i to 1. However, when the null is composite, such a rescaling

step would distort the scientific question.”

Sun and McLain (2012) further proposed the concept of empirical composite null as an

extension of Efron’s empirical null (Efron, 2004a) for testing composite nulls H0,i : µi 2
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[�a0, a0] under heteroscedastic models. It is important to note that the main message of

this article, which focuses on the impact of heteroscedastiticy on the alternative instead

of the null, is fundamentally di↵erent from that in Sun and McLain (2012). In fact, we

show that even when the null is simple, the heteroscedasticity still matters. Our finding,

which somehow contradicts the above quotes, is more striking and even counter-intuitive.

Moreover, we shall see that our data-driven HART procedure, which is based on Tweedie’s

formula (or the f -modeling approach, Efron, 2011), is very di↵erent from the deconvoluting

kernel method (or g-modeling approach) in Sun and McLain (2012)3. The new two-step

bivariate estimator in Section 3.2 is novel and highly nontrivial; the techniques employed

in the proofs of theory are also very di↵erent.

3 HART: Heteroscedasticity Adjusted Ranking and Thresh-

olding

The example in the previous section presents a setting where hypothesis tests based on the

full data (Xi,�i) can produce higher power than that from only using the standardized

data Zi. In this section we formalize this idea and show that the result holds in general

for heteroscedasticity problems. In Section 3.1 we first assume that the distributional

information is known and derive an oracle rule based on the full data. Then Section 3.2

develops data-driven schemes and computational algorithms to implement the oracle rule.

Finally theoretical properties of the proposed method are established in Section 3.3.

3.1 The oracle rule under heteroscedasity

Note that the models given by (2.1) and (2.2) imply that

Xi|�i
ind⇠ f�i(x) = (1� ⇡)f0,�i(x) + ⇡f1,�i(x), (3.1)

3 The deconvoluting kernel method has an extremely slow convergence rate. Our numerical studies
show that the method in Sun and McLain (2012) only works for composite nulls where the uncertainties in
estimation can be smoothed out over an interval [�a0, a0]. However, the deconvoluting method is highly
unstable and does not work well when testing simple nulls H0,i : µi = 0. Our numerical results show that
the two-step method in Section 3.2 works much better.
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where f0,�(x) = 1
��(x/�) is the null density, f1,�(x) = 1

�

R
��
�x�µ

�

�
gµ(µ)dµ is the alter-

native density, �(x) is the density of a standard normal variable, and f�(x) is the mixture

density. In conventional practice, the data are standardized as Zi = Xi/�i, and the follow-

ing mixture model is used

Zi
iid⇠ f(z) = (1� ⇡)f0(z) + ⇡f1(z), (3.2)

where f0(z) = �(z), f1(z) is the non-null density, and f(z) is the mixture density of the

z-values. As discussed previously, a standard approach involves converting the z-value to

a two-sided p–value Pi = 2�(�|Zi|), where �(·) is the standard normal cdf. The mixture

model based on p-values is

Pi
iid⇠ g(p) = (1� ⇡)I[0,1](p) + ⇡g1(p), for p 2 [0, 1], (3.3)

where I(·) is an indicator function, and g(·) and g1(·) are the mixture density and non-null

density of the p-values, respectively. Models 3.2 and 3.3 provide a powerful and flexible

framework for large-scale inference and have been used in a range of related problems such

as signal detection, sparsity estimation and multiple testing [e.g. Efron et al. (2001); Storey

(2002); Genovese and Wasserman (2002); Donoho and Jin (2004); Newton et al. (2004); Jin

and Cai (2007)].

The oracle FDR procedures for Models 3.2 and 3.3 are both known. We first review the

oracle z-value procedure (Sun and Cai, 2007). Define the local FDR (Efron et al., 2001)

Lfdri = P(H0|zi) = P(✓i = 0|zi) =
(1� ⇡)f0(zi)

f(zi)
. (3.4)

Then Sun and Cai (2007) showed that the optimal z-value FDR procedure is given by

�z = [I{Lfdr(zi) < c⇤} : 1  i  m], (3.5)

where c⇤ is the largest Lfdr threshold such that mFDR  ↵. Similarly, Genovese and
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Wasserman (2002) showed that the optimal p-value based FDR procedure is given by

�p = [I{Pi < c⇤} : 1  i  m], (3.6)

where c⇤ is the largest p-value threshold such that mFDR  ↵.

Next we derive the oracle rule based on m pairs {(xi,�i) : i = 1, . . . ,m}. This new

problem can be recast and solved in the framework of multiple testing with a covariate

sequence. Consider Model 3.1 and define the heterogeneity–adjusted significance index4

Ti ⌘ T (xi,�i) = P(✓i = 0|xi,�i) =
(1� ⇡)f0,�i(xi)

f�i(xi)
. (3.7)

Let Q(t) denote the mFDR level of the testing rule [I{Ti < t} : 1  i  m]. Then the oracle

full data procedure is denoted

�full = [I{Ti < t⇤} : 1  i  m], (3.8)

where t⇤ = sup{t : Q(t)  ↵}.

The next theorem provides the key result showing that ���full has highest power amongst

all ↵–level FDR rules based on {(xi,�i) : i = 1, · · · ,m}.

Theorem 1 Let D↵ be the collection of all testing rules based on {(xi,�i) : i = 1, . . . ,m}

such that mFDR�  ↵. Then ETP�  ETP�full for any � 2 D↵. In particular we have

ETP�p  ETP�z  ETP�full .

Based on Theorem 1, our proposed methodology employs a heteroscedasticity–adjusted

ranking and thresholding (HART) rule that operates in two steps: first rank all hypotheses

according to Ti and then reject all hypotheses with Ti  t⇤. We discuss in Section 3.2 our

finite sample approach for implementing HART using estimates for Ti and t⇤.

4Note that the oracle statistic P (✓i = 0|Xi,�i) is equivalent to P (✓i = 0|Zi,�i) since the pairs (Xi,�i)
and (Zi,�i) contain the same amount of information. We use the pairs (Xi,�i) in the next formula just to
facilitate the development of estimation procedures.
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3.2 Data-driven procedure and computational algorithms

We first discuss how to estimate Ti and then turn to t⇤. Inspecting Ti’s formula (3.7), the

null density f0,�i(xi) is known and the non-null proportion ⇡ can be estimated by ⇡̂ using

existing methods such as Storey’s estimator (Storey, 2002) or Jin-Cai’s estimator (Jin and

Cai, 2007). Hence we focus on the problem of estimating f�i(xi).

There are two possible approaches for implementing this step. The first involves directly

estimating f�i(xi) while the second is implemented by first estimating f1,�i(xi) and then

computing the marginal distribution via

f̂�i(xi) = (1� ⇡̂)f0,�i(xi) + ⇡̂f̂1,�i(xi). (3.9)

Our theoretical and empirical results strongly suggest that this latter approach provides

superior results so we adopt this method.

Remark 1 The main concern about the direct estimation of f�i(xi) is that the tail areas

of the mixture density are of the greatest interest in multiple testing but unfortunately

the hardest parts to accurately estimate due to the small number of observations in the

tails. The fact that f�i(xi) appears in the denominator exacerbates the situation. The

decomposition in (3.9) increases the stability of the density by incorporating the known

null density.

Standard bivariate kernel methods (Silverman, 1986; Wand and Jones, 1994) are not

suitable for estimating f1,�i(xi) because, unlike a typical variable, �i plays a special role in

a density function and needs to be modeled carefully. Fu et al. (2020) recently addressed a

closely related problem using the following weighted bivariate kernel estimator:

f̂⇤
�(x) :=

mX

j=1

�h�(� � �j)Pm
j=1 �h�(� � �j)

�hxj (x� xj), (3.10)

where h = (hx, h�) is a pair of bandwidths, �h�(� � �j)/{
Pm

j=1 �h�(� � �j)} determines

the contribution of (xj ,�j) based on �j , hxj = hx�j is a bandwidth that varies across

j, and �h(z) = 1p
2⇡h

exp
n
� z2

2h2

o
is a Gaussian kernel. The variable bandwidth hxj up-

weights/down-weights observations corresponding to small/large �j ; this suitably adjusts
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for the heteroscedasticity in the data.

Let M1 = {i : ✓i = 1}. In the ideal setting where ✓j is observed one could extend (3.10)

to estimate f1,�i(xi) via

f̃1,�(x) =
X

j2M1

�h�(� � �j)P
k2M1

�h�(� � �k)
�hxj (x� xj). (3.11)

Given that ✓j is unknown, we cannot directly implement (3.11). Instead we apply a weighted

version of (3.11),

f̂1,�i(xi) =
mX

j=1

ŵj�h�(�i � �j)Pm
k=1 ŵk�h�(�i � �k)

�hxj (xi � xj) (3.12)

with weights ŵj equal to an estimate of P (✓j = 1|xj ,�j). In particular we adopt a two step

approach:

1. Compute f̂ (0)
1,�i

(xi) via (3.12) with initial weights ŵ(0)
j = (1 � T̂ (0)

j ) for all j, where

T̂ (0)
j = min

⇢
(1�⇡̂)f0,�j (xj)

f̂⇤
�j

(xj)
, 1

�
, ⇡̂ is the estimated non-null proportion, and f̂⇤

�j
(xj) is

computed using (3.10).

2. Compute f̂ (1)
1,�i

(xi) via (3.12) with updated weights ŵ(1)
j = (1� T̂ (1)

j ) where

T̂ (1)
j =

(1� ⇡̂)f0,�j (xj)

(1� ⇡̂)f0,�j (xj) + ⇡̂f̂ (0)
1,�j

(xj)
.

This leads to our final estimate for Ti = P(H0|xi,�i):

T̂i = T̂ (2)
i =

(1� ⇡̂)f0,�i(xi)

(1� ⇡̂)f0,�i(xi) + ⇡̂f̂ (1)
1,�i

(xi)
.

In the next section, we carry out a detailed theoretical analysis to show that both f̂�i(xi)

and T̂i are consistent estimators with Ekf̂�i � f�ik2 = E
R
{f̂�i(x) � f�i(x)}2dx ! 0 and

T̂i
P�! Ti, uniformly for all i.

To implement the oracle rule (3.8), we need to estimate the optimal threshold t⇤, which

can be found by carrying out the following simple stepwise procedure.
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Procedure 1 (data-driven HART procedure) Rank hypotheses by increasing order of

T̂i. Denote the sorted ranking statistics T̂(1)  · · ·  T̂(m) and H(1), . . . , H(m) the correspond-

ing hypotheses. Let

k = max

(
j :

1

j

jX

i=1

T̂(i)  ↵

)
.

Then reject the corresponding ordered hypotheses, H(1), . . . , H(k).

The idea of the above procedure is that if the first j hypotheses are rejected, then the

moving average 1
j

Pj
i=1 T̂(i) provides a good estimate of the false discovery proportion, which

is required to fulfill the FDR constraint. Comparing with the oracle rule (3.8), Procedure

1 can be viewed as its plug-in version:

���dd = {I(T̂i  t̂⇤) : 1  i  m}, where t̂⇤ = T̂(k). (3.13)

The theoretical properties of Procedure 1 are studied in the next section.

3.3 Theoretical properties of Data-Driven HART

In Section 3.1, we have shown that the (full data) oracle rule ���full (3.8) is valid and optimal

for FDR analysis. This section discusses the key theoretical result, Theorem 2, which shows

that the performance of ���full can be achieved by its finite sample version ���dd (3.13) when

m ! 1. Inspecting (3.13), the main steps involve showing that both T̂i and t̂⇤ are “close”

to their oracle counterparts. To ensure good performance of the proposed procedure, we

require the following conditions.

(C1) supp(g�) 2 (M1,M2) and supp(gµ) 2 (�M,M) for some M1 > 0, M2 < 1, M < 1.

(C2) The kernel function K is a positive, bounded and symmetric function satisfying
R
K(t) = 1,

R
tK(t)dt = 0 and

R
t2K(t)dt < 1. The density function f�(t) has

bounded and continuous second derivative and is square integrable.

(C3) The bandwidths satisfy hx = o{(logm)�1}, lim
m!1

mhxh2� = 1, lim
m!1

m1��h�h2x = 1

and lim
m!1

m��/2h2�h
�1
x ! 0 for some � > 0.

(C4) ⇡̂
p! ⇡.
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Remark 2 For Condition (C2), the requirement on f� is standard in density estimation

theory, and the requirements on the kernel K is satisfied by our choice of a Gaussian kernel.

Condition (C3) is satisfied by standard choices of bandwidths in Wand and Jones (1994)

and Silverman (1986). The Jin-Cai estimator (Jin and Cai, 2007) fulfills Condition (C4) in

a wide class of mixture models.

Our theory is divided into two parts. The next proposition establishes the theoretical

properties of the proposed density estimator f̂� and the plug-in statistic T̂i. The convergence

of t̂⇤ to t⇤ and the asymptotic properties of ���dd are established in Theorem 2.

Proposition 1 Suppose Conditions (C1) to (C4) hold. Then

Ekf̂� � f�k2 = E
Z

{f̂�(x)� f�(x)}2dx ! 0,

where the expectation E is taken over (XXX,���,µµµ). Further, we have T̂i
P�! Ti.

Next we turn to the performance of our data-driven procedure ���dd when m ! 1. A

key step in the theoretical development is to show that t̂⇤
P�! t⇤, where t̂⇤ and t⇤ are defined

in (3.13) and (3.8), respectively.

Theorem 2 Under the conditions in Proposition 1, we have t̂⇤
P�! t⇤. Further, both the

mFDR and FDR of ���dd are controlled at level ↵+ o(1), and ETP�dd/ETP�full = 1 + o(1).

In combination with Theorem 1, these results demonstrate that the proposed finite

sample HART procedure (Procedure 1) is asymptotically valid and optimal.

4 Simulation

We first describe the implementation of HART in Section 4.1. Section 4.2 presents results

for the general setting where �i comes from a continuous density function. In Section

4.3, we further investigate the e↵ect of heterogeneity under a mixture model where �i

takes on one of two distinct values. Simulation results for additional settings, including

a non-Guassian alternative, unknown �i, weak dependence structure, non-Gaussian noise,

estimated empirical null, correlated µi and �i, and the global null, are provided in Section

E of the Supplementary Material.
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4.1 Implementation of HART

The accurate estimation of T̂i is crucial for ensuring good performance of the HART proce-

dure. The key quantity is the bivariate kernel density estimator f̂1,�(x), which depends on

the choice of tuning parameters h = (hx, h�). Note that the ranking and selection process in

Procedure 1 only involves small T̂i. To improve accuracy, the bandwidth should be chosen

based on the pairs (xi,�i) that are less likely to come from the null. We first implement Jin

and Cai’s method (Jin and Cai, 2007) to estimate the overall proportion of non-nulls in the

data, denoted ⇡̂. We then compute hx and h� by applying Silverman’s rule of thumb (Sil-

verman, 1986) to the subset of the observations {xi : Pi < ⇡̂}. When implementing HART,

we first estimate f�(x) using the data without (Xi,�i), and then plug-in the unused data

(Xi,�i) to calculate T̂i. This method can increase the stability of the density estimator.

The asymptotic property of this approach is established in Proposition 1.

4.2 Comparison in general settings

We consider simulation settings according to Models 2.1 and 2.2, where �i are uniformly

generated from U [0,�max]. We then generate Xi from a two-component normal mixture

model

Xi|�i
iid⇠ (1� ⇡)N(0,�2

i ) + ⇡N(2,�2
i ).

In the first setting, we fix �max = 4 and vary ⇡ from 0.05 to 0.15. In the second setting, we

fix ⇡ = 0.1 and vary �max from 3.5 to 4.5. Five methods are compared: the ideal full data

oracle procedure (OR), the z-value oracle procedure of Sun and Cai (2007) (ZOR)5, the

Benjamini-Hochberg procedure (BH), AdaPT (Lei and Fithian, 2018), and the proposed

data–driven HART procedure (DD). Note that we do not include methods that explore the

usefulness of sparsity structure (Scott et al., 2015; Boca and Leek, 2018; Li and Barber, 2019;

Cai et al., 2019) since the primary objective here is to incorporate structural information

encoded in �i. Also, although Ignatiadis et al. (2016) mention the idea of using �i as a

covariate to construct weighted p-values, no guidance is given on how to do so, and since

the way in which �i are incorporated is particularly important, we exclude it.

5We omit the comparison with the adaptive z-value (AZ) method in Sun and Cai (2007), the data-driven
version of ZOR, as AZ is dominated by ZOR.
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Figure 3: Comparison when �i is generated from a uniform distribution. We vary ⇡ in the
top row and �max in the bottom row. All methods control the FDR at the nominal level.
DD has roughly the same FDR but higher power compared to ZOR in all settings.

The nominal FDR level is set to ↵ = 0.1. For each setting, the number of tests is

m = 20, 000. Each simulation is also run over 100 repetitions. Then, the FDR is estimated

as the average of the false discovery proportion FDP(�) =
Pm

i=1{(1� ✓i)�i}/(
Pm

i=1 �i _ 1)

and the average power is estimated as the average proportion of true positives that are

correctly identified,
Pm

i=1(✓i�i)/(mp), both over the number of repetitions. The results for

di↵ering values of ⇡ and �max are respectively displayed in the first and second rows of

Figure 3.

Next we discuss some important patterns of the plots and provide interpretations.

(a) Panel (a) of Figure 3 shows that all methods appropriately control FDR at the nominal

level, with DD being slightly conservative.

(b) Panel (b) illustrates the advantage of the proposed HART procedure over existing

methods. When ⇡ is small, the power of OR can be 60% higher than ZOR. This
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shows that exploiting the structural information of the variance can be extremely

beneficial. DD has lower power compared to OR due to the inaccuracy in estimation.

However, DD still dominates ZOR and BH in all settings.

(c) ZOR dominates BH and the e�ciency gain increases as ⇡ increases. To explain the

power gain of ZOR over BH, let ⇡+ and ⇡� denote the proportion of true positive

signals and true negative signals, respectively. Then ⇡+ = ⇡ and ⇡� = 0. This

asymmetry can be captured by ZOR, which uses a one-sided rejection region. By

contrast, BH adopts a two-sided symmetric rejection region. Under the setting being

considered, the power loss due to the conservativeness of BH is essentially negligible,

whereas the failure of capturing important structural information in the alternative

accounts for most power loss.

(d) From the second row of Figure 3, we can again see that all methods control the FDR

at the nominal level. OR dominates the other three methods in all settings. DD is

less powerful than OR but has a clear advantage over ZOR with slightly lower FDR

and higher power.

(e) In most cases, AdaPT outperforms BH. However, it is important to note that pre-

ordering based on �i is a suboptimal way for using side information. Moreover, the

dominance of AdaPT over BH is not uniform (Section E.1 in the supplement). This

shows that pre-ordering based on �i can be anti-informative and lead to possible power

loss for AdaPT. By contrast, HART utilizes the side information in a principled and

systematic way. It uniformly improves competitive methods.

Finally, it should be noted that incorporating side information comes with computa-

tional costs: conventional methods including BH and ZOR both run considerably faster

than DD. However, DD runs faster than AdaPT.

4.3 Comparison under a two-group model

To illustrate the heteroscedasticity e↵ect more clearly, we conduct a simulation using a

simpler model where �i takes on one of two distinct values. The example illustrates that
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the heterogeneity adjustment is more useful when there is greater variation in the standard

deviations among the testing units.

Consider the setup in Models 2.1 and 2.2. We first draw �i randomly from two possible

values {�a,�b} with equal probability, and then generate Xi from a two-point normal mix-

ture model Xi|�i
iid⇠ (1� ⇡)N(0,�2

i ) + ⇡N(µ,�2
i ). In this simpler setting, it is easy to show

that HART reduces to the CLfdr method in Cai and Sun (2009), where the conditional Lfdr

statistics are calculated for separate groups defined by �a and �b. As previously, we apply

BH, ZOR, OR and DD to data with m = 20, 000 tests and the experiment is repeated on

100 data sets. We fix ⇡ = 0.1, µ = 2.5, �a = 1 and vary �b from 1.5 to 3. The FDRs

and powers of di↵erent methods are plotted as functions of �b, with results summarized in

the first row of Figure 4. In the second row, we plot the group-wise z-value cuto↵s and

group-wise powers as functions of �b for the DD method.

We can see that DD has almost identical performance to OR, and the power gain over

ZOR becomes more pronounced as �b increases. This is intuitive, because more variation

in � tends to lead to more information loss in standardization. The bottom row shows

the z-value cuto↵s for ZOR and DD for each group. We can see that in comparison to

ZOR, which uses a single z-value cuto↵, HART uses di↵erent cuto↵s for each group. The

z-value cuto↵ is bigger for the group with larger variance, and the gap between the two

cuto↵s increases as the degree of heterogeneity increases. In Panel d), we can see that the

power of Group b decreases as �b increases. These interesting patterns corroborate those

we observed in our toy example in Section 2.2.

5 Data Analysis

This section compares the adaptive z-value procedure [AZ, the data-driven implementation

of ZOR in Sun and Cai (2007)], BH, and HART on a microarray data set. The data

set measures expression levels of 12, 625 genes for patients with multiple myeloma, 36 for

whom magnetic resonance imaging (MRI) detected focal lesions of bone (lesions), and 137

for whom MRI scans could not detect focal lesions (without lesions) of bone (Tian et al.,

2003). For each gene, we calculate the di↵erential gene expression levels (Xi) and standard

errors (Si). The FDR level is set at ↵ = 0.1.
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Figure 4: Two groups with varying �b from 1.5 to 3. As �b increases, the cut-o↵ for group
a decreases whereas the cut-o↵ for group b increases. The power for tests in group b drops
quickly as �b increases. This corroborates our calculations in the toy example in Section
2.2 and the patterns revealed by Figure 1.

We first address two important practical issues. The first issue is that the theoretical

null N(0, 1) (red curve on the left panel of Figure 5) is much narrower compared to the

histogram of z-values. Efron (2004b) argued that a seemingly small deviation from the

theoretical z-curve can lead to severely distorted FDR analysis. For this data set, the

analysis based on the theoretical null would inappropriately reject too many hypotheses,

resulting in a very high FDR. To address the distortion of the null, we adopted the empirical

null approach (Efron, 2004b) in our analysis. Specifically, we first used the middle part

of the histogram, which contains 99% of the data, to estimate the null distribution as

N(0, 1.32) [see Efron (2004b) for more details]. The new p-values are then converted from

the z-values based on the estimated empirical null: P ⇤
i = 2�⇤(�2|Zi|), where �⇤ is the
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Figure 5: Left: histogram of z-values: the estimated empirical null N(0, 1.32) (green line)
seems to provide a better fit to the data compared to the theoretical null N(0, 1) (red line).
Middle: histogram of original p-values. Right: histogram of estimated p-values based on the
empirical null. The z-value histogram suggests that the theoretical null is inappropriate
(too narrow, leading to too many rejections). The use of an empirical null corrects the
non-uniformity of the histogram of the p-values.

CDF of a N(0, 1.32) variable. We can see from Figure 5 that the empirical null (green

curve) provides a better fit to the histogram of z-values. Another piece of evidence for the

suitability of the empirical null approach is that the histogram of the estimated p-values

(right panel) looks closer to uniform compared to that of original p-values (middle panel).

The uniformity assumption is crucial for ensuring the validity of p-value based procedures.

The second issue is the estimation of f�(x), which usually requires a relatively large

sample size to ensure good precision. Figure 6 presents the histogram of Si and scatter

plot of Si vs Zi. Based on the histogram, we propose to only focus on data points with

Si less than 1 (12172 out of 12625 genes are kept in the analysis) to ensure the estimation

accuracy of T̂i. Compared to conventional approaches, there is no e�ciency loss because

no hypothesis with Si > 1 is rejected by BH at ↵ = 0.1 – note that the BH p-value cuto↵

is 6⇥ 10�5, which corresponds to a z-value cuto↵ of 5.22; see also Figure 7. (If BH rejects

hypotheses with large Si, we recommend to carry out a group-wise FDR analysis, which

first tests hypotheses at ↵ in separate groups and then combines the testing results, as

suggested by Efron (2008a).)

Finally we apply BH, AZ and HART to the data points with Si < 1. BH uses the new p-

values P ⇤
i based on the estimated empirical null N(0, 1.32). Similarly AZ uses Lfdr statistics

where the null is taken as the density of a N(0, 1.32) variable. When implementing HART,
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Figure 6: Histogram of Si (left), scatter plot of (Zi, Si) (right)

Table 1: Numbers of genes (% of total) that are selected by each method.

↵-level BH AZ HART
0.1 8 (0.07%) 25 (0.2%) 122 (1%)

we estimate the non-null proportion ⇡ using Jin-Cai’s method with the empirical null taken

as N(0, 1.32). We further employ the jacknifed method to estimate f�(x) by following the

steps in Section 4.1. We summarize the number of rejections by each method in Table 1

and display the testing results in Figure 7, where we have marked rejected hypotheses by

each method using di↵erent colors.

HART rejects more hypotheses than BH and AZ. The numbers should be interpreted

with caution as BH and AZ have employed the empirical null N(0, 1.32) whereas HART has

utilized null density N(0,�2
i ) conditioned on individual �i – it remains an open question

how to extend the empirical null approach to the heteroscedastic case. Since we do not know

the ground truth, it is di�cult to assess the power gains. However, the key point of this

analysis, and the focus of our paper, is to compare the shapes of rejection regions to gain

some insights on the di↵erences between the methods. It can be seen that for this data set,

the rejection rules of BH and AZ only depend on Zi. By contrast, the rejection region for

HART depends on both Zi and Si. HART rejects more z-values when Si is small compared

to BH and AZ. Moreover, HART does not reject any hypothesis when Si is large. This

pattern is consistent with the intuitions we gleaned from the illustrative example (Figure

1) and the results we observed in simulation studies (Figure 4, Panel c).
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Figure 7: Scatter plot of rejected hypotheses by each method. Green: BH, blue: AZ, red:
HART. AZ and BH reject every hypothesis to the right of the dashed line. The rejection
region for HART depends on both z and �.

6 Discussion

6.1 Multiple testing with side information

Multiple testing with side or auxiliary information is an important topic that has received

much attention recently. The research directions are wide-ranging as there are various types

of side information, which may be either extracted from the same data using carefully con-

structed auxiliary sequences or gleaned from secondary data sources such as prior studies,

domain-specific knowledge, structural constraints and external covariates. The recent works

by Xia et al. (2019), Li and Barber (2019) and Cai et al. (2019) have focused on utilizing

side information that encodes the sparsity structure. By contrast, our work investigates

the impact of the alternative distribution, showing that incorporating �i can be extremely

useful for improving the ranking and hence the power in multiple testing 6.

In the context of FDR analysis, the key issue is that the hypotheses become unequal

in light of side information. Efron (2008b) argued that ignoring the heterogeneity among

study units may lead to FDR rules that are ine�cient, noninterpretable and even invalid.

We discuss two lines of work to further put our main contributions in context and to guide

future research developments.

Grouping, pioneered by Efron (2008b), provides an e↵ective strategy for capturing the

heterogeneity in the data. Cai and Sun (2009) showed that the power of FDR procedures

6A method is said to have better ranking if it rejects more true positives than its competitor at the same
FDR level. Theorem 1 in Section 3.1 shows that the oracle HART procedure has the optimal ranking in the
sense that it has the largest power among all FDR procedures at level ↵.
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can be much improved by utilizing new ranking statistics adjusted for grouping. Recent

works along this direction, including Liu et al. (2016), Barber and Ramdas (2017) and

Sarkar and Zhao (2017), develop general frameworks for dealing with a class of hierarchical

and grouping structures. However, the groups can be characterized in many ways and

the optimal grouping strategy still remains unknown. Moreover, discretizing a continuous

covariate by grouping leads to loss of information. HART directly incorporates �i into the

ranking statistic and hence eliminates the need to define groups.

Weighting is another widely used strategy for incorporating side information into FDR

analyses (Benjamini and Hochberg, 1997; Genovese et al., 2006; Roquain and Van De Wiel,

2009; Basu et al., 2018). For example, when the sparsity structure is encoded by a covariate

sequence, weighted p-values can be constructed to up-weight the tests at coordinates where

signals appear to be more frequent (Hu et al., 2010; Xia et al., 2019; Li and Barber, 2019).

However, the derivation of weighting functions for directly incorporating heteroscedasticity

seems to be rather complicated (Peña et al., 2011; Habiger et al., 2017). Notably, Habiger

(2017) developed novel weights for p-values as functions of a class of auxiliary parameters,

including �i as a special case, for a generic two-group mixture model. However, the for-

mulation is complicated and the weights are hard to compute – the methodology requires

handling the derivative of the power function, estimating several unknown quantities and

tuning a host of parameters.

6.2 Open issues and future directions

We conclude the article by discussing several open issues. First, HART works better for

large-scale problems where the density with heteroscedastic errors can be well estimated.

For problems with several hundred tests or fewer, p-value based algorithms such as BH or

the WAMDF approach (Habiger, 2017) are more suitable. The other promising direction for

dealing with smaller-scale problems, suggested by Castillo and Roquain (2018), is to employ

spike and slab priors to produce more stable empirical Bayes estimates (with frequentist

guarantees under certain conditions). Second, in practice the model given by (2.2) can be

extended to

µi|�i
ind⇠ (1� ⇡�i)�0(·) + ⇡�igµ(·|�i), �2

i
iid⇠ g�(·), (6.1)
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where both the sparsity level and distribution of non-null e↵ects depend on �i; this setting

has been considered in a related work byWeinstein et al. (2018). The heterogeneity-adjusted

statistic is then given by

Ti = P(✓i = 0|xi,�i) =
(1� ⇡�i)f0,�i(xi)

f�i(xi)
, (6.2)

where the varying proportion ⇡�i indicates that �i also captures the sparsity structure.

This is possible, for example, in applications where observations from the alternative have

larger variances compared to those from the null. An interesting, but challenging, direc-

tion for future research is to develop methodologies that can simultaneously incorporate

both the sparsity and heterocedasticity structures into inference. Third, the HART-type

methodology can only handle one covariate sequence {�i : 1  i  m}. It would be of great

interest to develop new methodologies and principles for information pooling for multiple

testing with several covariate sequences. Finally, our work has assumed that �i are known

in order to illustrate the key message (i.e. the impact of the alternative distribution on the

power of FDR analyses). Although this is a common practice, it is desirable to carefully

investigate the impact of estimating �i on the accuracy and stability of large-scale infer-

ence, and to develop more accurate simultaneous estimation procedures for unknown �i.

We have provided some empirical results in Appendix E.2 but a rigorous theoretical study,

along the lines of Fan et al. (2007) and Kosorok and Ma (2007), will be of much interest

for future research.
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Supplementary Material for “Heterocedasticity-Adjusted

Ranking and Thresholding for Large-Scale Multiple Testing”

This supplement contains the formulas for the illustrative example (Section A), proofs

of main theorems (Section B), propositions (Section C), and lemmas (Section D), as well

as additional numerical results (Section E).

A Formulas for the Illustrative Example

Consider Model 2.8 in Section 2.2. We derive the formulas for the oracle p-value, oracle

z-value and oracle full data procedures.

• ���p corresponds to the thresholding rule I(|Zi| > tp), where

tp = inf

8
<

:t > 0 :
2(1� ⇡)�̃(t)

2(1� ⇡)�̃(t) + ⇡
R n

�̃(t+ µa
� ) + �̃(t� µa

� )
o
dG(�)

 ↵

9
=

; ,

with �̃ being the survival function of the N(0, 1) variable.

• ���z is a one-sided thresholding rule of the form I(Zi > tz), where

tz = inf

(
t > 0 :

(1� ⇡)�̃(t)

(1� ⇡)�̃(t) + ⇡
R
�̃(t� µa

� )dG(�)
 ↵

)
.

• ���full is of the form I{P(✓i = 0|xi,�i) < �}. It can be written as I{Zi > tz,�(�)},

where

tz,�(�) =
µ2
a � 2�2 log

n
�⇡

(1��)(1�⇡)

o

2µa�
.

Denote �⇤ the optimal threshold. Hence ���full is given by I{P (✓i = 0|xi,�i) < �⇤},

where

�⇤ = sup

"
� 2 [0, 1] :

(1� ⇡)
R
�̃{tz,�(�)}dG(�)

(1� ⇡)
R
�̃{tz,�(�)}dG(�) + ⇡

R
�̃{tz,�(�)� µa

� }dG(�)

#
.

The optimal cuto↵s can be solved numerically from the above. The powers are given
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by

AP (���p) =

Z n
�̃
⇣
tp +

µa

�

⌘
+ �̃

⇣
tp �

µa

�

⌘o
dG(�),

AP (���z) =

Z
�̃
⇣
t� µa

�

⌘
dG(�),

AP (���full) =

Z
�̃
n
tz,�(�)�

µa

�

o
dG(�).

B Proofs of Theorems

B.1 Proof of Theorem 1

We divide the proof into two parts. In Part (a), we establish two properties of the testing

rule ���full(t) = {I(Ti < t) : 1  i  m} for an arbitrary 0 < t < 1. In Part (b) we show that

the oracle rule ���full(t⇤) attains the mFDR level exactly and is optimal amongst all FDR

procedures at level ↵.

Part (a). Denote ↵(t) the mFDR level of ���full(t). We shall show that (i) ↵(t) < t for

all 0 < t < 1 and that (ii) ↵(t) is nondecreasing in t. Note that E {
Pm

i=1(1� ✓i)�i} =

EX,� (
Pm

i=1 Ti�i). According to the definition of ↵(t), we have

EX,�

(
mX

i=1

{Ti � ↵(t)} I(Ti  t)

)
= 0. (B.1)

We claim that ↵(t) < t. Otherwise if ↵(t) � t, then we must have Ti < t  ↵(t). It follows

that the LHS must be negative, contradicting (B.1).

Next we show (ii). Let ↵(tj) = ↵j . We claim that if t1 < t2, then we must have ↵1  ↵2.

We argue by contradiction. Suppose that t1 < t2 but ↵1 > ↵2. Then

(Ti � ↵2)I(Ti < t2) = (Ti � ↵1)I(Ti < t1) + (↵1 � ↵2)I(Ti < t1) + (Ti � ↵2)I(t1  Ti < t2)

� (Ti � ↵1)I(Ti < t1) + (↵1 � ↵2)I(Ti < t1) + (Ti � ↵1)I(t1  Ti < t2).

It follows that E {
Pm

i=1(Ti � ↵2)I(Ti < t2)} > 0 since E {
Pm

i=1(Ti � ↵1)I(Ti < t1)} = 0

according to (B.1), ↵1 > ↵2 and Ti � t1 > ↵1, contradicting (B.1). Hence we must have

↵1 < ↵2.
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Part (b). Let ↵̄ = ↵(1). In Part (a), we show that ↵(t) is non–decreasing in t. It follows

that for all ↵ < ↵̄, there exists a t⇤ such that t⇤ = sup{t : ↵(t⇤) = ↵}. By definition, t⇤ is

the oracle threshold. Consider an arbitrary decision rule d = (d1, . . . , dm) 2 {0, 1}m such

that mFDR(d)  ↵. We have E
nPm

i=1(Ti � ↵)�fulli

o
= 0 and E {

Pm
i=1(Ti � ↵)di}  0.

Hence

E
(

mX

i=1

(�fulli � di)(Ti � ↵)

)
� 0. (B.2)

Consider transformation f(x) = (x � ↵)/(1 � x). Note that f(x) is monotone, we rewrite

�fulli = I [{(Ti � ↵)/(1� Ti)} < �], where � = (t⇤ � ↵)/(1� t⇤). In Part (a) we have shown

that ↵ < tOR < 1, which implies that � > 0. Hence

E
"

mX

i=1

(�fulli � di) {(Ti � ↵)� �(1� Ti)}
#
 0. (B.3)

To see this, consider the terms where �fulli � di 6= 0. Then we have two situations: (i)

�fulli > di or (ii) �
full
i < di. In situation (i), �fulli = 1, implying that {(Ti � ↵)/(1� Ti)} <

�. In situation (ii), �fulli = 0, implying that {(Ti � ↵)/(1� Ti)} � �. Therefore we always

have (�fulli � di) {(Ti � ↵)� �(1� Ti)}  0. Summing over the m terms and taking the

expectation yield (B.3). Combining (B.2) and (B.3), we obtain

0  E
(

mX

i=1

(�fulli � di)(Ti � ↵)

)
 �E

(
mX

i=1

(�fulli � di)(Ti � ↵)

)
.

Finally, since � > 0, it follows that E
nPm

i=1(�
full
i � di)(Ti � ↵)

o
> 0. Finally, we apply

the definition of ETP to conclude that ETP(�full) � ETP(d) for all d 2 D↵.

B.2 Proof of Theorem 2

We begin with a summary of notation used throughout the proof:

• Q(t) = m�1Pm
i=1(Ti � ↵)I{Ti < t}.

• bQ(t) = m�1Pm
i=1(T̂i � ↵)I{T̂i < t}.

• Q1(t) = E{(TOR � ↵)I{TOR < t}}.

• t1 = sup{t 2 (0, 1) : Q1(t)  0}: the “ideal” threshold.

3



For T (k)
OR < t < T (k+1)

OR , define a continuous version of bQ(t) as

bQC(t) =
t� bT (k)

OR

bT (k+1)
OR � bT (k)

OR

bQk +
bT (k+1)
OR � t

bT (k+1)
OR � bT (k)

OR

bQk+1,

where bQk = bQ
⇣
bT (k)
OR

⌘
. Since bQC(t) is continuous and monotone, its inverse bQ�1

C is well–

defined, continuous and monotone. Next we show the following two results in turn: (i)

bQ(t)
p! Q1(t) and (ii) bQ�1

C (0)
p! t1.

To show (i), note that Q(t)
p! Q1(t) by the WLLN, so that we only need to establish

that bQ(t)�Q(t)
p! 0. We need the following lemma, which is proven in Section D.

Lemma 1 Let Ui = (Ti � ↵)I(Ti < t) and bUi = (T̂i � ↵)I{T̂i < t}. Then E
⇣
bUi � Ui

⌘2
=

o(1).

By Lemma 1 and Cauchy-Schwartz inequality, E
n⇣
bUi � Ui

⌘⇣
bUj � Uj

⌘o
= o(1). Let

Sm =
Pm

i=1

⇣
bUi � Ui

⌘
. It follows that

V ar
�
m�1Sm

�
 m�2

mX

i=1

E
⇢⇣
bUi � Ui

⌘2�
+O

0

@ 1

m2

X

i,j:i 6=j

E
n⇣
bUi � Ui

⌘⇣
bUj � Uj

⌘o
1

A = o(1).

By Proposition 1, E(m�1Sm) ! 0, applying Chebyshev’s inequality, we obtain m�1Sm =

bQ(t)�Q(t)
p! 0. Hence (i) is proved. Notice that Q1(t) is continuous by construction, we

also have bQ(t)
p! bQC(t).

Next we show (ii). Since bQC(t) is continuous, for any " > 0, we can find ⌘ > 0 such

that
��� bQ�1

C (0)� bQ�1
C

n
bQC (t1)

o��� < " if
��� bQC (t1)

��� < ⌘. It follows that

P
n��� bQC (t1)

��� > ⌘
o
� P

n��� bQ�1
C (0)� bQ�1

C

n
bQC (t1)

o��� > "
o
.

Proposition 1 and the WLLN imply that bQC(t)
p! Q1(t). Note that Q1 (t1) = 0. Then

P
⇣��� bQC (t1)

��� > ⌘
⌘
! 0. Hence we have bQ�1

C (0)
p! bQ�1

C

n
bQC (t1)

o
= t1, completing the

proof of (ii).

To show FDR(���dd) = FDR(���full)+o(1) = ↵+o(1), we only need to show mFDR(���dd) =

mFDR(���full) + o(1). The result then follows from the asymptotic equivalence of FDR and

mFDR, which was proven in Cai et al. (2019).
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Define the continuous version of Q(t) as QC(t) and the corresponding threshold as

Q�1
C (0). Then by construction, we have

�dd =
h
I
n
T̂i  bQ�1

C (0)
o
: 1  i  m

i
and �full =

⇥
I
�
Ti  Q�1

C (0)
 
: 1  i  m

⇤
.

Following the previous arguments, we can show that Q�1
C (0)

p! t1. It follows that bQ�1
C (0) =

Q�1
C (0) + op(1). By construction mFDR(�full) = ↵. The mFDR level of �dd is

mFDR(�dd) =
PH0

n
T̂i  bQ�1

C (0)
o

P
n
T̂i  bQ�1

C (0)
o .

From Proposition 2, T̂i
p! Ti. Using the continuous mapping theorem, mFDR

�
���dd
�
=

mFDR
�
���full

�
+ o(1) = ↵+ o(1). The desired result follows.

Finally, using the fact that T̂i
p! Ti and bQ�1

C (0)
p! Q�1

C (0), we can similarly show that

ETP(���dd)/ETP(���full) = 1 + o(1).

C Proof of Proposition 1

Summary of notation

The following notation will be used throughout the proofs:

• f̂⇤
�(x) =

Pm
j=1

⇢
�h�(� � �j)Pm
i=1 �h�(� � �i)

�
�hx�j (x� xj).

• f̂⇤
1,�(x) =

Pm
j=1

⇢
�h�(� � �j)I(✓j = 1)Pm
i=1 �h�(� � �i)I(✓i = 1)

�
�hx�j (x� xj).

• f̃1,�(x) =
Pm

j=1

⇢
�h�(� � �j)P (✓j = 1|xj ,�j)Pm
i=1 �h�(� � �i)P (✓i = 1|xi,�i)

�
�hx�j (x� xj).

• f̂1,�(x) =
Pm

j=1

⇢
�h�(� � �j)P̂ (✓j = 1|xj ,�j)Pm
i=1 �h�(� � �i)P̂ (✓i = 1|xi,�i)

�
�hx�j (x� xj).

• f̂�(x) = (1� ⇡̂)f0,�(x) + ⇡̂f̂1,�(x).

The basic idea is that a consistent one–step estimator constructed via f̂⇤
�(x) leads to a

consistent two–step estimator via f̂�(x). By Condition (C4) and the triangle inequality, it

5



is su�cient to show that

E
Z n

f̂1,�(x)� f1,�(x)
o2

dx ! 0. (C.4)

Let uj =
�h�(� � �j)Pm
i=1 �h�(� � �i)

. A direct consequence of condition (C1 ) is 0 <
C1

m
 Euj 

C2

m
< 1 for some positive constants C1 and C2. Let C 0 = min(1, C1).Consider event

A =

(�����

mX

i=1

✓j �m⇡

����� <
C 0

2
m⇡

)
. (C.5)

By Hoe↵ding’s inequality and Condition (C2 ), P (AC)O(h�2
x )  exp(�C 02m/2)O(h�2

x ) !

0. Therefore it su�ces to prove (C.4) under A. We establish the result in three steps:

1. E
R
{f̂⇤

1,�(x)� f1,�(x)}2dx ! 0.

2. E
R
{f̃1,�(x)� f̂⇤

1,�(x)}2dx ! 0.

3. E
R
{f̂1,�(x)� f̃1,�(x)}2dx ! 0.

The proposition then follows from the triangle inequality.

C.1 Proof of Step (a)

Let b⇤j =
�h�(� � �j)I(✓j = 1)Pm
i=1 �h�(� � �i)I(✓i = 1)

. It is easy to show that

n
f̂⇤
1,�(x)� f1,�(x)

o2
=

mX

j=1

mX

k=1

b⇤jb
⇤
k {�hx�k

(x� xk)� f1,�(x)}
�
�hx�j (x� xj)� f1,�(x)

 
.

Under condition (C1 ) and event A, we have E(b⇤jb⇤k) = O(m�2). Using standard arguments

in density estimation theory (e.g. Wand and Jones (1994) page 21), and the fact that

E
Pm

j=1(b
⇤
j )

2 = O(m�1h�1
� ), we have E

R
{f̂⇤

1,�(x) � f1,�(x)}2dx = O
�
(mh�hx)�1 + h4x

 
.

Under condition (C2) and (C3) the RHS ! 0, establishing Step (a).
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C.2 Proof of Step (b)

Let bj =
�h�(� � �j)P (✓j = 1|xj ,�j)Pm
i=1 �h�(� � �i)P (✓i = 1|xi,�i)

. Then

n
f̃1,�(x)� f̂⇤

1,�(x)
o2

=
mX

j=1

(b⇤j � bj)
2�2

hx�j
(x� xj)

+
X

(j,k):j 6=k

(b⇤j � bj)(b
⇤
k � bk)�hx�j (x� xj)�hx�k

(x� xk).(C.6)

We first bound E(b⇤j � bj)2. Write E(b⇤j � bj)2 = {E(b⇤j � bj)}2+V ar(b⇤j � bj). It is clear

that E(b⇤j ) and E(bj) are both O(m�1). Hence {E(b⇤j � bj)}2 = O(m�2). Next consider

V ar(b⇤j � bj) = V ar(b⇤j ) + V ar(bj)� 2Cov(b⇤j , bj). We have by condition (C3)

V ar(b⇤j ) = V ar

⇢
I(✓j = 1)�h�(� � �j)Pm
i=1 �h�(� � �i)I(✓i = 1)

�
 E(b⇤j )2 = O(m�2h�1

� ).

Similarly V ar(bj) = O(m�2h�1
� ). It follows that Cov(b⇤j , bj) = O(m�2h�1

� ). Therefore

V ar(b⇤j � bj) = O(m�2h�1
� ) and E(b⇤j � bj)2 = O(m�2h�1

� ). Using the fact that
R
�2
hx�j

(x�

xj)dx = O(h�1
x ), we have

Z
E

mX

j=1

(b⇤j � bj)
2�2

hx�j
(x� xj)dx = O{(mhxh�)

�1} ! 0. (C.7)

Next we bound E{(b⇤j � bj)(b⇤k � bk)} for j 6= k. Consider the decomposition

E{(b⇤j � bj)(b
⇤
k � bk)} = E(b⇤j � bj)E(b⇤k � bk) + Cov(b⇤j � bj , b

⇤
k � bk). (C.8)

Our goal is to show that E{(b⇤j � bj)(b⇤k � bk)} = O(m�3h�2
� ) + O(m�4h�4

� ). It su�ces to

show

E✓|�,x✓|�,x✓|�,x{(b⇤j � bj)(b
⇤
k � bk)} = O(m�3h�2

� ) +O(m�4h�4
� ). (C.9)

Observe that V ar
n

1
mh�1

�

Pm
i=1 �h�(� � �j)I(✓i = 1)|�, x�, x�, x

o
= O(m�1) and

E✓|�,x✓|�,x✓|�,x

(
1

mh�1
�

mX

i=1

�h�(� � �j)I(✓i = 1)

)
=

1

mh�1
�

mX

i=1

�h�(� � �j)P (✓i = 1|�i, xi).
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Applying Chebyshev’s inequality,

1

mh�1
�

mX

i=1

�h�(� � �j)I(✓i = 1)� 1

mh�1
�

mX

i=1

�h�(� � �j)P (✓i = 1|�i, xi)
p�! 0.

It follows that for any ✏ > 0,

P

(�����

mX

i=1

�h�(� � �j)I(✓i = 1)�
mX

i=1

�h�(� � �j)P (✓i = 1|�i, xi)

����� < ✏mh�1
�

)
! 1.

Under A defined in (C.5), we have
Pm

i=1 �h�(� � �j)I(✓i = 1) > h�1
� C3m for some C3, and

P

(
mX

i=1

�h�(� � �j)P (✓i = 1|�i, xi) < h�1
� C3m

)
! 0. (C.10)

The boundedness of b⇤j and bj and (C.10) imply that we only need to prove (C.9) on

the event A⇤ =
�
(xxx,���) :

Pm
i=1 �h�(� � �j)P (✓i = 1|�i, xi) � h�1

� C3m
 
. We shall consider

E✓|�,x✓|�,x✓|�,x(b
⇤
j � bj) and Cov(b⇤j � bj , b⇤k � bk|���,xxx) in turn. Write

E✓|�,x✓|�,x✓|�,x(b
⇤
j ) = E✓|�,x✓|�,x✓|�,x

⇢
I(✓j = 1)�h�(� � �j)Pm
i=1 �h�(� � �i)I(✓i = 1)

�

= P (✓j = 1|xj ,�j)E✓|�,x✓|�,x✓|�,x

⇢
�h�(� � �j)Pm

i=1 �h�(� � �i)I(✓i = 1)

�

+ Cov

⇢
✓j ,

�h�(� � �j)Pm
i=1 �h�(� � �i)I(✓i = 1)

�����, x�, x�, x

�
.

Let Y =
�h�(� � �j)Pm

i=1 �h�(� � �i)I(✓i = 1)
. We state three lemmas that are proven in Section D.

Lemma 2 Under event A⇤
, we have E✓|�,x✓|�,x✓|�,x(Y )�E✓|�,x✓|�,x✓|�,x(Y |✓j = 1) = O(m�2) and E✓|�,x✓|�,x✓|�,x(Y )�

E✓|�,x✓|�,x✓|�,x(Y |✓j = 0) = O(m�2h�1
� ).

Lemma 3 Under event A⇤
, we have

E✓|�,x✓|�,x✓|�,x

⇢
�h�(� � �j)Pm

i=1 �h�(� � �i)I(✓i = 1)

�
=

�h�(� � �j)Pm
i=1 �h�(� � �i)P (✓i = 1|xi,�i)

+O(m�2h�2
� ).

Lemma 4 Under event A⇤
, we have Cov(b⇤j � bj , b⇤k � bk|���,xxx) = O(m�3h�2

� ).
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According to Lemma 2, we have

Cov

⇢
✓j ,

�h�(� � �j)Pm
i=1 �h�(� � �i)I(✓i = 1)

�����, x�, x�, x

�
(C.11)

=

Z
{P (✓j = 0|xj ,�j)P (✓j = 1|xj ,�j)}{y � E✓|�,x✓|�,x✓|�,x(Y )}fY |✓j=1,�,x�,x�,x(y)dy

�
Z
{1� P (✓j = 1|xj ,�j)}2{y � E✓|�,x✓|�,x✓|�,x(Y )}fY |✓j=0,�,x�,x�,x(y)dy = O(m�2h�1

� ).

Together with Lemma 3, we have

E✓|�,x✓|�,x✓|�,x

⇢
I(✓j = 1)�h�(� � �j)Pm
i=1 �h�(� � �i)I(✓i = 1)

�
=

P (✓j = 1|xj ,�j)�h�(� � �j)Pm
i=1 �h�(� � �i)P (✓i = 1|xi,�i)

+O(m�2h�2
� ).

(C.12)

It follows that E(b⇤j � bj) = O(m�2h�2
� ) and E(b⇤j � bj)E(b⇤k � bk) = O(m�4h�4

� ). The

decomposition (C.8) and Lemma 4 together imply E{(b⇤j � bj)(b⇤k � bk)} = O(m�3h�2
� ) +

O(m�4h�4
� ). It follows that

Z
E

X

(j,k):j 6=k

(b⇤j�bj)(b
⇤
k�bk)�hx�j (x�xj)�hx�j (x�xk)dx = O{(mhxh

2
�)

�1+O
�
(mh�)

�2
 
! 0.

(C.13)

Combing (C.6), (C.7) and (C.13), we conclude that E
R
{f̃1,�(x)� f̂⇤

1,�(x)}2dx ! 0.

C.3 Proof of Step (c)

Let qj = P (✓j = 1|�j , xj), q̂j = P̂ (✓j = 1|�j , xj) = min

(
(1� ⇡̂)f0,�j (xj)

f̂⇤
�j
(xj)

, 1

)
and f̂1,�(x) =

Pm
j=1

�h�(� � �j)q̂jPm
i=1 �h�(� � �i)q̂i

�hx�j (x� xj).

Write q̂j = qj + aj , then |aj |  1 and aj = oP (1). We have

E
Z n

f̂1,�(x)� f̃1,�(x)
o2

dx = O

(
h�1
x m2E

✓
�h�(� � �j)q̂jPm
i=1 �h�(� � �i)q̂i

� �h�(� � �j)qjPm
i=1 �h�(� � �i)qi

◆2
)

= O
�
h�1
x h2�Ea2j

 
.
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Next we explain why the last equality holds. Let ci = �h�(� � �i)h�. Then

E
⇢

�h�(� � �j)q̂jPm
i=1 �h�(� � �i)q̂i

� �h�(� � �j)qjPm
i=1 �h�(� � �i)qi

�2

= E
⇢
aj
Pm

i=1 �h�(� � �i)qi � qj
Pm

i=1 �h�(� � �i)ai
{
Pm

i=1 �h�(� � �i)q̂i}{
Pm

i=1 �h�(� � �i)qi}

�2

= h2�
1

m4
O

2

4E
(
aj

mX

i=1

ciqi � qj

mX

i=1

ciai

)2
3

5

=
h2�
m4

O

2

4E

8
<

:m2a2j � 2maj

mX

i=1

ai +

 
mX

i=1

ai

!2
9
=

;

3

5 =
h2�
m2

O
�
E
�
a2j
� 

.

The last line holds by noting that E (ajai) 
q
E(a2j )E(a2i ) = O{E(a2j )}.

The next step is to bound E(a2j ). Note that aj = O

(
f0,�j (xj){f̂⇤

�j
(xj)� f�j (xj)}

f�j (xj)f̂
⇤
�j
(xj)

)
.

By the construction of q̂j , we have f̂�j (xj) � (1� ⇡̂)f0,�j (xj). Hence

aj = O

(
1�

f̂⇤
�j
(xj)

f�j (xj)

)
and E(a2j ) = O

2

4E
(
1�

f̂⇤
�j
(xj)

f�j (xj)

)2
3

5 .

LetKj =
⇣
��j

p
�
p
logm�M,�j

p
�
p
logm+M

⌘
. By the Gaussian tail bound, P {xj 62 Kj} =

O(m��/2). By the boundedness of a2j and the fact that h�1
x h2�m

��/2 ! 0 (Condition (C3 )),

we only need to consider E

2

41� 2
f̂⇤
�j
(xj)

f�j (xj)
+

(
f̂⇤
�j
(xj)

f�j (xj)

)2 ����xj

3

5 for xj 2 Kj .

Let f�(xj) =
R
��(x) {(1� ⇡)�0(xj � x) + ⇡gµ(xj � x)} dx. Define a jacknifed version

of f̂⇤,(j)
�j that is formed without the pair (�j , xj). It follows that

E{f̂⇤,(j)
�j

(xj)|xj} =

Z Z
�q

�2+h2
x�

2
j

(x) {(1� ⇡)�0(xj � x) + ⇡gµ(xj � x)} g�(�j)d�jdx.

By the intermediate value theorem and Condition (C1),

E{f̂⇤,(j)
�j

(xj)|xj} =

Z
�p

�2+h2
xc
(x) {(1� ⇡)�0(xj � x) + ⇡gµ(xj � x)} dx

10



for some constant c. Next consider the ratio

E{f̂⇤,(j)
�j (xj)|xj}
f�j (xj)

=

R
�p

�2+h2
xc
(x) {(1� ⇡)�0(xj � x) + ⇡gµ(xj � x)} dx

R
��(x) {(1� ⇡)�0(xj � x) + ⇡gµ(xj � x)} dx

.

By Condition (C1), supp(gµ) 2 (�M,M) with M < 1, we have

inf
xj�M<x<xj+M

�p
�2+h2

xc
(x)

��(x)


E{f̂⇤,(j)
�j (xj)|xj}
f�j (xj)

 sup
xj�M<x<xj+M

�p
�2+h2

xc
(x)

��(x)
.

Note that xj 2 (��j
p
�
p
logm�M,�j

p
�
p
logm+M). The above infimum and supremum

are taken over x 2 K = (��j
p
�
p
logm� 2M,�j

p
�
p
logm+2M). Using Taylor expansion

�p
�2+h2

xc
(x)

��(x)
=

�p
�2 + h2xc

"
1 +

1X

k=1

1

k!

⇢
h2xcx

2

2(�2 + h2xc)

�k
#
,

we have infx2K
�p

�2+h2
xc
(x)

��(x)
=

�p
�2 + h2xc

= 1 +O(h2x). Similarly,

sup
x2K

�p
�2 + h2xc

(
1 +

1X

k=1

1

k!

✓
h2xcx

2

2(�2 + h2xc)

◆k
)

= 1 +O(h2x) +O

"
sup

1X

k=1

1

k!

⇢
h2xcx

2

2(�2 + h2xc)

�k
#
.

It follows that

E{f̂⇤,(j)
�j (xj)|xj}
f�j (xj)

= 1 +O(h2x) +O

(
sup

1X

k=1

1

k!

✓
h2xcx

2

2(�2 + h2xc)

◆k
)
, (C.14)

1� 2
E{f̂⇤,(j)

�j (xj)|xj}
f�j (xj)

= �1 +O(h2x) +O

(
sup

1X

k=1

1

k!

✓
h2xcx

2

2(�2 + h2xc)

◆k
)
. (C.15)

Next consider E
(
f̂⇤,(j)
�j (xj)

f�j (xj)

����xj

)2

=

"
E{f̂⇤,(j)

�j (xj)|xj}
f�j (xj)

#2
+ V ar

(
f̂⇤,(j)
�j (xj)

f�j (xj)

����xj

)
. By the

same computation on page 21 of Wand and Jones (1994),

V ar

(
f̂⇤,(j)
�j (xj)

f�j (xj)

����xj

)
= O

�
(mhx)

�1f�j (xj)
�1
 
+ o

�
(mhx)

�1f�j (xj)
�2
 
.

Since xj 2 Kj , f�j (xj) � C3m��/2 for some constant C3, together with Condition (C3 ), we
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have h�1
x V ar

(
f̂⇤,(j)
�j (xj)

f�j (xj)

����xj

)
= o(1). It follows from (C.14) and (C.15) that

h�1
x � 2h�1

x E
(
f̂⇤,(j)
�j (xj)

f�j (xj)

����xj

)
+ h�1

x E
(
f̂⇤,(j)
�j (xj)

f�j (xj)

����xj

)2

= O

(
hx + sup

1X

k=1

1

k!

✓
h2k�1
x ckx2k

2k(�2 + h2xc)
k

◆)
+ o(1). (C.16)

By condition (C2) and the range of x, the RHS goes to 0.

Let Sj =
Pm

i=1 �h�(�j��i) and S�
j =

Pm
i 6=j �h�(�j��i). Some algebra shows f̂⇤

�j
(xj) =

S�
j

Sj
f̂⇤,(j)
�j (xj)+

1

2Sj⇡h�hx�j
. We use the fact that f�j (xj) � C3m��/2 for some constant C3

and Condition (C3) to claim that on A⇤,

h�1
x

E{f̂⇤
�j
(xj)|xj}

f�j (xj)
= h�1

x

E{f̂⇤,(j)
�j (xj)|xj}
f�j (xj)

+ o(1). (C.17)

Similar computation shows that

h�1
x E

(
f̂⇤
�j
(xj)

f�j (xj)

����xj

)2

= h�1
x E

(
f̂⇤,(j)
�j (xj)

f�j (xj)

����xj

)2

+ o(1). (C.18)

(C.16), (C.17) and (C.18) together implies h�1
x h2�E{a2j |xj} ! 0. Hence E

R n
f̂1,�(x)� f̃1,�(x)

o2
dx !

0 and Step (c) is established. T̂i
p! Ti then follows from Lemma A.1 and Lemma A.2 in

Sun and Cai (2007).

D Proof of Lemmas

D.1 Proof of lemma 1

Using the definitions of bUi and Ui, we can show that
⇣
bUi � Ui

⌘2
=
⇣
T̂i � Ti

⌘2
I
⇣
T̂i  t, Ti  t

⌘
+

⇣
T̂i � ↵

⌘2
I
⇣
T̂i  t, Ti > t

⌘
+ (Ti � ↵)2 I

⇣
T̂i > t, Ti  t

⌘
. Denote the three sums on the

12



RHS as I, II, and III respectively. By Proposition 2, E(I) = o(1). Let " > 0. Consider

P
⇣
T̂i  t, Ti > t

⌘
 P

⇣
T̂i  t, Ti 2 (t, t+ ")

⌘
+ P

⇣
T̂i  t, Ti � t+ "

⌘

 P {Ti 2 (t, t+ ")}+ P (|Ti � Ti| > ")

The first term on the right hand is vanishingly small as " ! 0 because bT i
OR is a continuous

random variable. The second term converges to 0 by Proposition 2. we conclude that

II = o(1). In a similar fashion, we can show that III = o(1), thus proving the lemma.

D.2 Proof of lemma 2

Note that E✓|�,x✓|�,x✓|�,x(Y |✓j = 0) � E✓|�,x✓|�,x✓|�,xY � E✓|�,x✓|�,x✓|�,x(Y |✓j = 1). It is su�cient to bound

E✓|�,x✓|�,x✓|�,x(Y |✓j = 0)� E✓|�,x✓|�,x✓|�,x(Y |✓j = 1). The lemma follows by noting that

E✓|�,x✓|�,x✓|�,x(Y |✓j = 0)� E✓|�,x✓|�,x✓|�,x(Y |✓j = 1)

= E✓|�,x✓|�,x✓|�,x

(
�h�(� � �j)P

i 6=j �h�(� � �i)✓i

)
� E✓|�,x✓|�,x✓|�,x

(
�h�(� � �j)P

i 6=j �h�(� � �i)✓i + �h�(� � �j)

)

= E✓|�,x✓|�,x✓|�,x

(
�2
h�
(� � �j)

{
P

i 6=j �h�(� � �i)✓i}{
P

i 6=j �h�(� � �i)✓i + �h�(� � �j)}

)

 E✓|�,x✓|�,x✓|�,x

(
�2
h�
(� � �j)

(
P

i 6=j �h�(� � �i)✓i)2

)
= O(m�2h�1

� ).

D.3 Proof of lemma 3

Let Z =
Pm

i=1 �h�(� � �i)I(✓i = 1), We expand
1

Z
around E✓|�,x✓|�,x✓|�,x(Z) and take expected

value:

E✓|�,x✓|�,x✓|�,x

✓
1

Z

◆
= E✓|�,x✓|�,x✓|�,x

"
1

E✓|�,x✓|�,x✓|�,x(Z)
� 1

{E✓|�,x✓|�,x✓|�,x(Z)}2 (Z � E✓|�,x✓|�,x✓|�,xZ) +
1X

k=3

(�1)k�1

{E✓|�,x✓|�,x✓|�,x(Z)}k (Z � E✓|�,x✓|�,x✓|�,xZ)k�1

#
.

The series converges on A. Moreover, using normal approximation of binomial distribution,

it can be shown that E✓|�,x✓|�,x✓|�,x(Z � E✓|�,x✓|�,x✓|�,xZ)k = O((mh�1
� )k/2). The lemma follows by noting

that E✓|�,x✓|�,x✓|�,x
�
Z�1

�
= {E✓|�,x✓|�,x✓|�,x(Z)}�1 +O(m�2h2�).

13



D.4 Proof of lemma 4

Consider b⇤j =
�h�(� � �j)I(✓j = 1)Pm
i=1 �h�(� � �i)I(✓i = 1)

defined in Section C.1. Let b̃j =
✓jPm
i=1 ✓i

. By

Condition (C1 ), Cov(b⇤j , b
⇤
k|���,xxx) = O{h�2

� Cov(b̃j , b̃k|���,xxx)}. Note that Cov(b̃j , b̃k|���,xxx) =

E✓|�,x✓|�,x✓|�,x(b̃j b̃k) � E✓|�,x✓|�,x✓|�,x(b̃j)E✓|�,x✓|�,x✓|�,x(b̃k). Using similar argument as in the proof for (C.12), we

have

E✓|�,x✓|�,x✓|�,x(b̃j) =
P (✓j = 1|���,xxx)Pm
i=1 P (✓i = 1|���,xxx)+O(m�2) and E✓|�,x✓|�,x✓|�,x(b̃k) =

P (✓k = 1|���,xxx)Pm
i=1 P (✓i = 1|���,xxx)+O(m�2).

It follows that E✓|�,x✓|�,x✓|�,x(b̃j)E✓|�,x✓|�,x✓|�,x(b̃k) =

⇢
P (✓j = 1|���,xxx)Pm
i=1 P (✓i = 1|���,xxx)

�⇢
P (✓k = 1|���,xxx)Pm
i=1 P (✓i = 1|���,xxx)

�
+O(m�3).

Next we compute E✓|�,x✓|�,x✓|�,x(b̃j b̃k). Note that E✓|�,x✓|�,x✓|�,x(b̃j b̃k) = P (✓j = 1|���,xxx)E✓|�,x✓|�,x✓|�,x

⇢
✓k

(
Pm

i=1 ✓i)
2

����✓j = 1

�
.

Using similar arguments as the proof for (C.11), we have Cov

⇢
✓k,

1

(
Pm

i=1 ✓i)
2

����✓j = 1,���,xxx

�
=

O(m�3). Let ✓✓✓�k = (✓j : 1  j  m, j 6= k). We have

E✓|�,x✓|�,x✓|�,x

⇢
✓k

(
Pm

i=1 ✓i)
2

����✓j = 1

�
= P (✓k = 1|���,xxx)E✓✓✓�k

⇢
1

(
Pm

i=1 ✓i)
2

����✓j = 1,���,xxx

�
+O(m�3).

Using similar arguments in Lemmas 3 and 2, we have

E✓✓✓�k

⇢
1

(
Pm

i=1 ✓i)
2

����✓j = 1,���,xxx

�
=

1

E✓|�,x✓|�,x✓|�,x(
Pm

i=1 ✓i)
2
+O(m�3).

In the previous equation, the conditional expectation E✓✓✓�k
can be replaced by E✓✓✓ because

the term ✓k only a↵ects the ratio by a term of order O(m�3). Note that E✓|�,x✓|�,x✓|�,x(
Pm

i=1 ✓i)
2 =

�
E✓|�,x✓|�,x✓|�,x(

Pm
i=1 ✓i)

 2
+ V ar(

Pm
i=1 ✓i|���,xxx) and V ar(

Pm
i=1 ✓i|���,xxx)  m. We have

E✓|�,x✓|�,x✓|�,x

⇢
✓k

(
Pm

i=1 ✓i)
2

����✓j = 1

�
=

P (✓k = 1|���,xxx)
{
Pm

i=1 P (✓i = 1|���,xxx)}2
+O(m�3).

Finally, the lemma follows from the fact that

Cov(b̃j , b̃k|���,xxx) = E✓|�,x✓|�,x✓|�,x(b̃j b̃k)� E✓|�,x✓|�,x✓|�,x(b̃j)E✓|�,x✓|�,x✓|�,x(b̃k) = O(m�3).

14



E Supplementary Numerical Results

E.1 Non-Gaussian alternative

We generate �i uniformly from [0.5,�max], and generate Xi according to the following

model:

Xi|�i
iid⇠ (1� ⇡)N(0,�2

i ) + ⇡N(µi,�
2
i ), µi

iid⇠ 0.5N(�1.5, 0.12) + 0.5N(2, 0.12).

In the first setting, we fix �max = 2 and vary ⇡ from 0.05 to 0.15. In the second setting,

we fix ⇡ = 0.1 and vary �max from 1.5 to 2.5. Five methods are compared: the ideal full

data oracle procedure (OR), the z-value oracle procedure of (Sun and Cai, 2007) (ZOR),

the Benjamini-Hochberg procedure (BH), AdaPT (Lei and Fithian, 2018) (AdaPT), and

the proposed data–driven HART procedure (DD). The nominal FDR level is set to ↵ = 0.1.

For each setting, the number of tests is m = 20, 000. Each simulation is also run over 100

repetitions. The results are summarized in Figure 8. All methods can control the FDR at

the nominal level with BH slightly conservative. DD performs almost as well as OR. The

ordering information from �i seems to help AdaPT in some cases, but in other cases, it

causes AdaPT to underperform BH. There is a clear power gap between DD and ZOR.

E.2 Unknown �i

This section investigates the robustness of our method when �i is unknown. In some

applications, the exact value of �i is unknown but can be estimated. For this simulation,

we independently generate 200 copies of Xi using the following model:

Xi|�i
iid⇠ (1� ⇡)N(0,�2

i ) + ⇡N(2/
p
200,�2

i ), �i
iid⇠ U [0.5,�max].

For fair comparison we replace ZOR by AZ, the data driven version of ZOR described

in (Sun and Cai, 2007). We use the sample standard deviation of xi (denoted si) as an

estimate of �i for DD, AZ, BH and AdaPT. OR has access to the exact value of �i. We

then apply the testing procedures to the pairs (
p
200x̄i, si). The z-value is computed asp

200x̄i
si

and the p-value is computed using 1
2{1��(|zi|)} where � is the CDF for standard

normal distribution. Strictly speaking the z-values should follow a t distribution, but since

15
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Figure 8: Comparison when �i is generated from a uniform distribution and µi is generated
from a Gaussian mixture. We vary ⇡ in the top row and �max in the bottom row. All
methods control the FDR at the nominal level. DD performs almost as well as OR and has
a significant power advantage over ZOR,BH and AdaPT.

the sample size is relatively large, normal distribution serves as a good approximation. The

number of tests is m = 20, 000. Each simulation is run over 100 repetitions. In the first

setting, we fix �max = 4 and vary ⇡ from 0.05 to 0.15. In the second setting, we fix ⇡ = 0.1

and vary �max from 3.5 to 4.5. The results are summarized in Figure 9.

We can see that all data-driven methods have been adversely a↵ected. However, the

inflation of the FDR for all methods are mild and the overflow of FDR for DD is less severe

compared to the other three data-driven methods. The gap in power between OR and DD

becomes larger but the power advantage of DD over other methods is maintained.

16



0.06 0.08 0.10 0.12 0.14

0.
00

0.
05

0.
10

0.
15

0.
20

a)FDR Comparison varing π

π

FD
R

BH
AZ
OR
DD
AdaPT

0.06 0.08 0.10 0.12 0.14

0.
04

0.
06

0.
08

0.
10

0.
12

b)Power Comparison varing π

π

Po
we

r

3.6 3.8 4.0 4.2 4.4

0.
00

0.
05

0.
10

0.
15

0.
20

c)FDR Comparison varing σmax

σmax

FD
R

3.6 3.8 4.0 4.2 4.4

0.
04

0.
06

0.
08

0.
10

0.
12

d)Power Comparison varing σmax

σmax

Po
we

r

Figure 9: Comparison when �i is unknown. We vary ⇡ in the top row and �max in the
bottom row. All data-driven methods are adversely a↵ected. But the e↵ect on DD is the
smallest.

E.3 Weak dependence

We investigate the robustness of our method under weak dependence. We consider two

weak dependence models:

Case 1 : We use the following model:

µi
iid⇠ (1� ⇡)�0(·) + ⇡�2(·), �i

iid⇠ U [0,�max], xxx ⇠ N(µµµ,⌃),

where the covariance matrix is a block matrix:

⌃ =

0

@M11 0

0 M22

1

A .
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Figure 10: Comparison under weak dependence case 1. The dependence structure has
little e↵ect on all the methods. The pattern is almost the same as in the independent case.

Here M11 is a 4000 ⇥ 4000 matrix, the (i, i) entry is �2
i , the (i, i + 1) and (i + 1, i) entries

are 0.5�i�i+1, the (i, i + 2) and (i + 2, i) entries are 0.4�i�i+2. The rest of the entries are

0. M22 is a 16000⇥ 16000 diagonal matrix, with the (i, i) entry being �2
i+4000. In the first

setting, we fix �max = 4 and vary ⇡ from 0.05 to 0.15. In the second setting, we fix ⇡ = 0.1

and vary �max from 3.5 to 4.5. The results are summarized in Figure 10. The number of

tests is m = 20, 000. We can see that the weak dependence has little e↵ect on the pattern.

This demonstrates the robustness of DD under dependence.

Case 2 : We use the following model:

µi
iid⇠ (1� ⇡)�0(·) + ⇡�2(·), �i

iid⇠ U [0,�max], xxx ⇠ N(µµµ,⌃),
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Figure 11: Comparison under weak dependence case 2. Again, the dependence structure
has little e↵ect on all the methods. The pattern is almost the same as in the independent
case.

where ⌃ =

0

@M11 0

0 M22

1

A . Here M11 is a 4000 ⇥ 4000 matrix, the (i, j) entry of M11 is

0.5|i�j|�i�j . M22 is a 16000⇥ 16000 diagonal matrix with diagonal being (�2
4001, ...,�

2
20000).

In the first setting, we fix �max = 4 and vary ⇡ from 0.05 to 0.15. In the second setting,

we fix ⇡ = 0.1 and vary �max from 3.5 to 4.5. The results are summarized in Figure 11.

We can see again, there is no noticeable di↵erence in pattern from the independent setting.

This shows the robustness of DD under positive dependence. This seems to be consistent

with existing results in the literature.
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E.4 Non-Gaussian noise

We study the performance of our method when the noise follows a heavy-tailed distribution.

For this simulation, we independently generate 200 copies of Xi using the following model:

Xi = µi + �i✏i, µi
iid⇠ (1� ⇡)�0(·) + ⇡�2/

p
200(·), �i

iid⇠ U [0,�max], ✏i
iid⇠ t5.

We use the sample standard deviation of xi (denoted �̂i) as an estimate of �i for all five

methods. We then apply the testing procedures to the pairs (
p
200x̄i, �̂i). The number of

tests is m = 20, 000. Each simulation is run over 100 repetitions. We compare BH, the

adaptive z-value procedure (AZ, Sun and Cai, 2007), DD, OR and AdaPT. Note that in

this case, the model is mis-specified even for OR. But OR has access to the distribution of

µi and ⇡ while other data-driven methods do not. In the first setting, we fix �max = 4 and

vary ⇡ from 0.05 to 0.15. In the second setting, we fix ⇡ = 0.1 and vary �max from 3.5 to

4.5. The results are summarized in Figure 12. We can see that the pattern is similar to the

Gaussian-noise case.

E.5 Unknown null distribution

We study the performance of our method when the z-values do not follow a standard normal

distribution under the null hypothesis. For this simulation, we use the following model:

Zi
iid⇠ N(0, 0.82), �i

iid⇠ U [0,�max], Xi = Zi�i + µi, µi
iid⇠ (1� ⇡)�0(·) + ⇡�2(·).

For the data-driven methods, we estimate the null distribution of zi’s using the method

described in Jin and Cai (2007). Let �0 be the estimated variance of Zi. For DD, f0,�j

is now the density function of N(0,�2
0�

2
j ). The p-values are obtained as the two-sided

tail probabilities with respect to the estimated empirical null. In the first setting, we fix

�max = 4 and vary ⇡ from 0.05 to 0.15. In the second setting, we fix ⇡ = 0.1 and vary �max

from 3.5 to 4.5. The results are summarized in Figure 13.

We can see that the variance of the estimator of null variance has a noticeable e↵ect on

all data-driven methods. The FDR control are not as precise as before for all data-driven

methods. In particular, the gap between DD and ZOR has become smaller. However, DD
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Figure 12: Comparison when the noise is non-Gaussian. The non-Gaussian noise has little
e↵ect on the overall pattern.

still performs the best among all data-driven methods.

E.6 Correlated µa,i, �i

E.6.1 z-value is a lossless summary

We study the performance of our method under the following model:

�i
iid⇠ U [0.5,�max], µa,i|�i ⇠ U [�i, 2�i], Xi|µi,�i ⇠ (1� ⇡)N(0,�2

i ) + ⇡N(µa,i,�
2
i ).

In this situation standardization, which leads to the following model

Zi
iid⇠ (1� ⇡)N(0, 1) + ⇡N(u, 1), u ⇠ U [1, 2],
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Figure 13: Comparison when the null distribution is estimated. We can see that all the
data-driven methods show some instability: this is due to the variance of the estimator of
null variance. But DD still out-performs other data-driven methods

would make a lot of sense.

It can be shown that in this case the oracle method based on Zi coincides with the

oracle method based on (x,�i). So there is no information loss from standardization.

We compare di↵erent methods and the simulation result is summarized in Figure 14.

The number of tests is m = 20, 000. Each simulation is run over 100 repetitions. In the

first setting, we fix �max = 4 and vary ⇡ from 0.05 to 0.15. In the second setting, we fix

⇡ = 0.1 and vary �max from 3.5 to 4.5. One can see that performance of the data-driven

HART is almost identical to the two oracle procedures.
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Figure 14: Comparison when µa,i and �i are correlated but z-value is a lossless summary.
We can see that in this case oracle method based on Zi coincides with the oracle method
based on (x,�i). But the data-driven method still performs well.

E.6.2 z-value is not a lossless summary

We study the performance of our method under the following model:

�i
iid⇠ U [0.5,�max], µa,i|�i ⇠ U [0.5�2

i ,�
2
i ], Xi|µi,�i ⇠ (1� ⇡)N(0,�2

i ) + ⇡N(µa,i,�
2
i ).

Under this setting, the oracle method based on z-value only is not equivalent to the full

oracle. In this case both the oracle and the data-driven HART procedure would outperform

the oracle z-value procedure. The simulation result is summarized in Figure 15. The number

of tests is m = 20, 000. Each simulation is run over 100 repetitions. In the first setting, we

fix �max = 4 and vary ⇡ from 0.05 to 0.15. In the second setting, we fix ⇡ = 0.1 and vary

�max from 3.5 to 4.5.
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Figure 15: Comparison when µa,i and �2
i are correlated and z-value is not a lossless

summary. We can see that in this case the data-driven HART procedure outperforms
methods based on z-value.

We can see from the simulation that OR has much higher power than ZOR. Moreover,

the data-driven HART procedure (DD) has higher power than ZOR as well.

E.7 Global null

We study the stability of our data-driven procedure under the global null (no signals). We

use the following model:

�i
iid⇠ U [0.5,�max], Xi|�i ⇠ N(0,�2

i ).

We vary �max from 3.5 to 4.5. The number of tests is m = 20, 000. Each simulation is run

over 100 repetitions. The simulation result is summarized in Figure 16. Recall that FDR is
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defined as E

 P
i(1� ✓i)�i

max{
P

i �i, 1}

�
. In the case of global null, the FDP

P
i(1� ✓i)�i

max{
P

i �i, 1}
is either

0 or 1. We report the FDR as the average of FDPs. For each �max, we also record the

number of repetitions with n rejections for BH and DD in Table 2. Note that under the

global null the oracle knows ⇡ = 0. The oracle statistics Ti = 1 for all i. Hence the number

of rejections is zero in all replications.
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Figure 16: The data driven procedure is stable under global null.

�max 3.5 3.7 3.9 4.1 4.3 4.5
n BH DD BH DD BH DD BH DD BH DD BH DD
0 96 98 90 98 92 96 93 97 93 100 92 97
1 4 2 7 1 6 4 5 3 4 0 6 2
2 0 0 1 0 2 0 2 0 3 0 1 1
3 0 0 2 1 0 0 0 0 0 0 1 0

Table 2: Distribution of the numbers of rejections by BH and DD. n is the number of
rejections.

We can see that our data-driven HART procedure seems to be comparable to BH in

term of the stability in FDR control. The reason for the robustness of data-driven HART

under the global null is that when estimating the marginal distribution f(xi,�i) we have
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already employed the known (null) density. This step has stabilized the bivariate density

estimate in regions with few observations.
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