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Fig. 11. Schematic diagram of constraint (6) with σ.3/D1

Moreover, T
.j/
OR.tj , rj , sj/ enjoys the properties in theorem 3 of the paper. Detailed proofs are available from

https://hugogogo.github.io/paper/cars_discussion_supplement.pdf. If there is not
a one-to-one mapping between σ.j/ and j, then T

.j/
OR.tj , rj , sj/ must be estimated carefully.

The authors replied later, in writing, as follows.

We thank the discussants for their insightful comments and excellent contributions. It is our great delight
to meet some discussants in London, and we are pleased to participate in further discussions in writing.
The discussions are wide ranging. For brevity, we focus only on some key topics.

Key message: data reduction, information loss and optimality
Data reduction via constructing linear contrasts has long been used as an essential tool for statistical anal-
yses. Examining the process at a high level, the conventional practice involves first dividing raw data into
‘relevant’ and ‘irrelevant’ parts (or data carving, per Professor Ramdas), and then developing inference
procedures based solely on the summary of the relevant part. This practice is widespread in statistical
analysis. A major surprise is that such standard practices in data processing could lead to significant in-
formation loss in large-scale inference. Our work marks a clear departure from the existing work where
auxiliary information is gleaned from external data. We propose new strategies to extract structural infor-
mation within the same sample by using auxiliary covariates. We thank Professor Fan for the comments
on our contributions to the optimality theory in false discovery rate FDR control, which has been lack-
ing in the literature. This is an important direction in large-scale inference, considering that optimality
has been the goal in the development of many fundamental results in statistics including Fisher’s theory
on the asymptotic efficiency of maximum likelihood estimation and the Neyman–Pearson lemma on the
optimality of the likelihood ratio test.

Structural information in high dimensional inference
We appreciate the illuminating comments from Roquain and Nichols on the role of auxiliary data in
amplifying the signals. From a decision theoretic view, classical ideas such as Robbins’s compound decision
theory and the James–Stein shrinkage estimator show that the joint structure of primary statistics can be
exploited to construct more efficient estimation or testing rules. A key message conveyed through this work
is that extra valuable structural information can be extracted from the seemingly irrelevant part of the data.
This point is particularly crucial in high dimensional settings. When the number of parameters is small,
the information loss is inconsequential (since the joint structure cannot be estimated well). However, in
the case with thousands of parameters structural information can be recovered with good precision from
auxiliary statistics, which can play a key role in improving the power.

The sufficiency principle and broad applicability of covariate-assisted ranking and screening
We concur with Fan and Habiger in their insightful comments on sufficient statistics: a fundamental prin-
ciple that seems to have been largely ignored in the FDR-literature. The comments also shed new lights on
the applicability of covariate-assisted ranking and screening (CARS) beyond the case that requires doubly
sparse means. The general idea in CARS works for a broad class of bivariate models (see Section 4.1 and
our remark 7) and the doubly sparse assumption should be viewed as a special setting to explain intuitively
why CARS works. Moreover, violations of the sufficiency principle are common in data processing and
CARS can benefit from a non-sparse auxiliary sequence as long as the covariate encodes useful structural
information. These points have been nicely corroborated by Professor Habiger’s several interesting papers
on heterogeneous discrete data. Professor Habiger’s inspiring discussion also points the way forward for
developing effective data combination strategies across qualitative and quantitative variables.
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Using covariate-assisted ranking and screening in other high dimensional problems
CARS provides a generic tool for inferring sparsity structure by integrating evidence from multiple sources.
The interesting discussions by Bogomolov, Heller and Yekutieli, Yu, Bien and Witten, Yang and Cheng,
Li and Wong, and Banerjee and Mukherjee, among others, show that CARS has considerable potential
for providing better solutions to a wide range of high dimensional problems including large-scale analysis-
of-variance tests, high dimensional replicability analysis, sparse linear discriminant analysis, multiview
analysis, hierarchical inference and sparse compound estimation. It is encouraging to see some preliminary
successes reported by the discussants. We feel that revisiting the fundamental sufficiency principle in
large-scale inference and carefully investigating possible information loss in data reduction would be an
important and fruitful direction for future research. We appreciate the creative ideas and stimulating
comments from the discussants on applying CARS to various high dimensional inference problems. We
very much look forward to further explorations along these lines.

The dependent case and the ‘grouping, adjusting and pooling’ procedure
Fan, Goeman and Solari expressed legitimate concerns on the independence assumption. Although the
robustness of CARS under dependence has been investigated numerically in the on-line appendix B.5, we
take this opportunity to describe briefly our recent work aiming to address the important dependence issue.
Xia et al. (2018) developed a general information pooling framework that involves grouping, adjusting
and pooling (GAP) to leverage the structural information from an auxiliary sequence. GAP is built on the
Benjamini–Hochberg (BH) procedure and utilizes weighted p-values to capture the heterogeneity among
hypotheses. We generalize the weighted multiple-testing theory in Genovese et al. (2006) to show that GAP
controls FDR under a range of dependence structures, including weakly dependent tests arising from high
dimensional linear regression and Gaussian graphical models. However, the optimal choice of weights is
still an open issue that deserves more research; inspiring discussions can be found in the comments by
Dobriban, Ramdas and Habiger on use of weighted p-values and interactive use of masked p-values.

Asymptotic false discovery rate control and variations of the Benjamini–Hochberg procedure
CARS and Lfdr-methods offer asymptotic FDR-control and work better for large-scale testing problems
where the density functions can be well estimated. By contrast, the BH procedure offers guaranteed FDR-
control under a range of dependence structures. For smaller-scale problems with a few dozen or several
hundred tests as considered by Goeman and Solari, we recommend GAP and other variations of the BH
procedure (see the discussions by Dobriban, Ramdas and Habiger) to incorporate useful side information.
It would be of great interest to investigate the performance of Bayesian CARS (see Professor Roquain’s
comments) to increase the stability in small sample settings.

The sparse case and updated covariate-assisted ranking and screening package
We thank Roquain and Nichols for noticing the issues of our CARS package under the very sparse case.
We have uploaded to the Comprehensive R Archive Network the updated package that includes the ‘sparse
option’ described in Section 5.1 and a new section on the vignette illustrating that CARS, using the sparse
option, controls FDR when m = 10000 and k = 10: a setting considered by Professor Nichols. The key
idea for the sparsity adjustment is to use the known densities to stabilize the bivariate density estimate in
regions with few observations. Through communication with Professor Mark van de Wiel, we recognize
that, for methods based on CARS and Lfdr, the instability of the non-parametric density estimator (in
the denominator) seems to be a common issue. In the sparse regime, Professor Roquain’s proposal of
employing Cauchy slab priors is a promising direction with the potential of having the best of both worlds:
the method avoids non-parametric modelling of a bivariate density, while the choice of priors has great
promise of leading to good frequentist properties.

On choosing the auxiliary sequence
We briefly address the interesting question from Goeman and Solari whether the total variance could be
a good competitor as an auxiliary variable. First, it can be shown that, with known and homoscedastic
variances, the pair (T1, T2) is a sufficient statistic (per Professor Fan); hence T2 is optimal in the sense
that it has no information loss. Although the sufficiency principle may be satisfied by other pairs, our
choice of T2 not only is intuitively appealing but also simplifies the development of both methodology and
theory; see the discussion in Section 2.1. Second, an important consideration in choosing the auxiliary
variable is to avoid selection bias. As noted in a post by Professor Ryan Tibshirani on the ‘Normal deviate’
blog, screening based on between-group variance leads to severe selection bias. The total variance is not
promising either, at least under the CARS framework, because under heteroscedasticity it is correlated with
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the primary statistic and cannot capture the sparsity structure effectively. Moreover, the total variances
are not suitable as useful structures to inform BH algorithms. The p-value null distribution is likely to be
distorted when screening, grouping or weighting is carried out via total variance.

Open issues and concluding remarks
Large-scale multiple testing is a fundamental building block in contemporary statistics and developing
efficient procedures that control the FDR, a celebrated innovation in the past two decades, has been a
prominent and impactful research area. Although the hypothesis testing framework is not omnipotent as
pointed out by Professor Longford, we believe that some concerns may be possibly addressed by tailor-
ing the general FDR-concept to the needs of specific applications; notable ideas include weighted FDR
(Benjamini and Hochberg, 1997), directional FDR (Guo et al., 2010) and the false important discovery
rate (Sun and McLain, 2012). As pointed out by Medina and Stehlı́k, the null hypothesis should be care-
fully formulated, and existing methods should be properly modified for specific applications. Much more
research is still needed in this area.
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