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Abstract

Due to rapid technological advances, researchers are now able to collect
and analyze ever larger data sets. Statistical inference for big data often re-
quires solving thousands or even millions of parallel inference problems
simultaneously. This poses significant challenges and calls for new princi-
ples, theories, and methodologies. This review provides a selective survey
of some recently developed methods and results for large-scale statistical
inference, including detection, estimation, and multiple testing. We begin
with the global testing problem, where the goal is to detect the existence
of sparse signals in a data set, and then move to the problem of estimat-
ing the proportion of nonnull effects. Finally, we focus on multiple testing
with false discovery rate (FDR) control. The FDR provides a powerful and
practical approach to large-scale multiple testing and has been successfully
used in a wide range of applications. We discuss several effective data-driven
procedures and also present efficient strategies to handle various grouping,
hierarchical, and dependency structures in the data.
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1. LARGE-SCALE INFERENCE

In current business and economic research, massive and complex data sets, with thousands or even
millions of variables, are collected routinely by governments, organizations, small businesses, and
large enterprises. This expansive data collection calls for new techniques for making large-scale
statistical inference, which involves performing inferences on many study units simultaneously.
One phenomenon that arises particularly frequently is sparsity: Out of a large number of ob-
servations, most of them are pure noise and only a small fraction contain signal, or information
of interest. The identification of these sparse signals is challenging, similar to finding needles in
a haystack. These new challenges have motivated the development of a plethora of novel con-
cepts and powerful approaches to the important and rapidly growing field of large-scale inference.
This article reviews significant progress that has been made recently in this field, with a focus on
multiple testing with false discovery rate (FDR) control.

1.1. Examples

Large-scale inference techniques have been successfully applied in a wide range of fields, including
financial economics, marketing analytics, social science, signal processing, and biological sciences
such as genomics and neuroimaging. We start with several examples in business and social science
research, where large data sets are routinely collected from empirical studies.

The first example is detection of anomalous events in financial markets. An anomaly is a pat-
tern in the data that does not conform to the normal state or behavior. Important applications
include the detection of credit card fraud, cyber intrusion, financial market anomalies, and covert
communication. For example, techniques for reliably detecting and precisely locating credit card
fraud are important for credit card companies to improve their service and reduce possible finan-
cial losses. To predict and detect fraud, one must monitor an enormous amount of transactions
from many customers simultaneously. The detection and modeling of extreme events in time
series are rapidly growing areas in financial economics. The sequential change-point analysis has
been widely used in detecting anomalies and instabilities (Lumsdaine & Papell 1997, Andreou &
Ghysels 2006, Fryzlewicz 2014). One outstanding challenge is identifying anomalies in the fi-
nancial markets as quickly as possible while controlling the false alarm rate. These large-scale
inference problems involve either producing massive amounts of real-time estimates or testing
thousands or even millions of hypotheses with high frequencies.

The second example is selection of skilled fund managers. In financial markets, monthly returns
from a large number of mutual funds are routinely collected. As a guide to evaluating past and
future performance, investors are interested in knowing the proportion of fund managers who
possess true stock-picking skills (Barras et al. 2010). Furthermore, it is desirable to accurately
identify skilled fund managers so that investors can build a portfolio that achieves outstanding
performance. However, it is possible that some outperforming funds are due to luck and not
special skills, whereas some skilled fund managers may underperform from time to time. The
issue is further aggravated by the fact that thousands of mutual funds exist in the financial markets.
The selection of skilled fund managers requires some formal principles to control false discoveries.

The third example is evaluation of trading rules. An important goal in financial economics
is to test a large number of factors to explain cross-sectional patterns and use these to develop
or evaluate new trading strategies. However, the simultaneous investigation of a large number
of factors gives rise to the issue of selection bias or data-snooping bias (Lo & MacKinlay 1990,
Harvey & Liu 2015). That is, one may find seemingly significant but in fact spurious correlations
in the data. Moreover, small or moderate effects, promoted by expansive data mining, may be
overestimated and thus appear outstanding. To reduce data-snooping bias, investors are required
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to carry out an appropriate haircut for the reported effect size. However, most existing rules are
ad hoc. For example, a common practice in evaluating trading rules is to discount the reported
Sharpe ratio by 50%. It is desirable to develop more rigorous backtesting rules to account for the
data mining effects with theoretical guarantees.

The fourth example is model selection in macroeconomic forecasting. Forecasting with high-
dimensional time series data is an important problem in macroeconomics, where one often needs
to, for example, evaluate the effects of monetary policies or predict GDP growth and Consumer
Price Index inflation based on a large set of macroeconomic variables (Stock & Watson 2012).
Standard techniques such as the vector autoregressive model and factor analysis must be modified
with penalized variable selection techniques to avoid overfitting. In a recent study, Chudik et al.
(2016) propose a new variable selection principle that involves the evaluation of the net contri-
bution of each covariate in explaining the response while taking into account the multiplicity in
simultaneous tests. By adopting a multiple testing framework as the stopping rule, both the model
interpretability and forecasting performance can be much improved.

The fifth example is comparison of academic performances. The adequate yearly progress
(AYP) study of California high schools (Rogosa 2003) aims to compare academic performances of
socioeconomically advantaged (SEA) versus socioeconomically disadvantaged (SED) students.
In the AYP study, standard tests in mathematics were administered to 7,867 schools and a
z-score for comparing SEA and SED students was obtained for each school. The identifica-
tion of interesting schools is an important step for making proper allocations of available funds.
The policy makers need to come up with an effective and fair ranking and selection procedure to
analyze the yearly survey data. This involves carrying out thousands of significance tests simulta-
neously and making decisions by taking into account other important factors such as school sizes
and previous allocations of funds.

In the above examples, researchers or policy makers need to either estimate thousands of pa-
rameters or test thousands of hypotheses simultaneously. This requires new theories and method-
ologies to overcome the limitations of classical methods that were developed for small studies. As
a first step, we need a realistic and effective model to describe the data structure in large-scale
inference problems; this is discussed in the next section.

1.2. A Two-Group Model

Suppose we are interested in making inference on n units, each represented by a summary statis-
tic X (e.g., a p-value or a z-value). The cases are either null or nonnull, with nonnull cases
referring to units exhibiting interesting patterns or abnormal behaviors, such as fraudulent credit
card transactions, financial market anomalies, or fund managers with superior performance. In
practice, we do not know the true states of nature but only observe a mixture of null and nonnull
cases. There are many ways to model sparse data, but one of the most natural is to posit a mixture
model

X 1, . . . , Xn
i.i.d.∼ (1 − εn)F0 + εn F1, 1.

where the mixing proportion εn is small, F0 is the null distribution, and F1 is the nonnull or
alternative distribution. Equivalently, for each 1 ≤ i ≤ n, one assumes that Xi has probability
1−εn of being a null case and probability εn of being a nonnull case. If the summary statistics (e.g.,
p-values) are comparable across units, then Equation 1 would be suitable under heterogeneity. It is
commonly assumed that F0 = Unif(0, 1) if Xi is a p-value and F0 = N (0, 1) if Xi is a z-value. Let
f0 and f1 denote the densities corresponding to null and nonnull cases, respectively. The marginal
density is given by f (x) = (1 − εn) f0(x) + εn f1(x). The mixture model (Equation 1) provides a
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convenient framework for large-scale inference and has been widely used in the literature (Efron
et al. 2001, Storey 2002, Newton et al. 2004, Sun & Cai 2007).

1.3. Global and Simultaneous Inference

The tasks in large-scale inference are often complex: It is desirable to investigate a massive data
set from different perspectives and, possibly, through multiple stages. One often starts with a few
general questions regarding the global features of a large data set. A natural question is whether
there are any signals in the data set. For example, a credit card company wants to know if any
fraudulent transactions have occurred in the previous period, and an Internet security agency
needs to decide whether there is cyber intrusion at a given time. These applications give rise to
the anomaly or signal detection problem, which can be stated as a global testing problem,

Hn
0 : εn = 0 versus Hn

1 : εn �= 0. 2.

The proportion εn of nonnull effects is an important quantity. For instance, the magnitude of εn can
help one make informative decisions in large-scale studies. For example, investors are interested
in knowing how many fund managers possess true stock-picking skills, and policy makers need to
decide how many schools should receive assistance or funds to reduce the large gaps between test
scores. An interesting and technically challenging global inference problem is obtaining a good
estimate of the nonnull proportion εn.

However, global inference is often inadequate in many decision-making scenarios. For in-
stance, investors might be interested in further identifying which fund managers are truly skilled,
and credit card companies might need to locate fraudulent transactions precisely to take further
actions. In these situations, one needs to look at every individual case and decide whether it is null
or nonnull. This gives rise to a multiple testing problem, which involves making simultaneous
inferences on n hypotheses:

Hi0: case i is null versus Hi1: case i is nonnull, i = 1, . . . , n. 3.

Unlike global inference problems, the goal in simultaneous inference is to make precise deci-
sions at individual levels, which is more challenging due to the increased precision required and
new complications such as data-snooping bias and multiple comparisons; these issues are discussed
next.

1.4. New Challenges

While searching for interesting features in the vast amount of data, researchers routinely investi-
gate a large number of parallel problems at the same time, and many analyses may be conducted
using the same data set. Common practices include multiple testing of thousands of hypotheses,
simultaneous estimation of a large number of parameters, or frequent predictions on numerous
outcomes. Making multiple inferences simultaneously without properly accounting for multiplic-
ity can lead to misleading conclusions. For example, one may find seemingly significant but in fact
spurious patterns in the data or overestimate the strength of the selected associations.

The multiplicity effect in large-scale inference can be illustrated by the following spam email
example (White 2000). Suppose a person wishes to demonstrate that he is a stock-picking genius.
On the first day, he sends emails to 102,400 individuals and makes predictions on the stock market
activity in the next day: Half are told that the market will go up and the other half that it will
go down. On the second day, those who received the wrong predictions will be discarded from
the email list, and the remainder will get emails with new predictions: again, half up and half
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down. After 10 trading days, the 100 people who are still on the email list will have received 10
correct predictions in a row. Without knowing the scheme or accounting for the multiplicity,
these 100 people must be very impressed.

In addition to multiple predictions, the multiplicity effect is also a serious issue in large-scale
estimation and testing problems, where repeated application of classical methods tends to yield
severely biased estimates and inflation of false discoveries. For example, the identification of skilled
fund managers requires looking through the past performances of a large number of funds and
choosing a significance threshold to characterize the benchmark performance. However, not all
fund managers who outperform the benchmark are skilled: Some are truly skilled, but some are
just lucky. Moreover, even if the selected managers do have some skills, their true performances
may be substantially overestimated.

This review provides a selective survey of some significant recent developments in large-scale
inference, including detection, estimation, and multiple testing. Section 2 considers global in-
ference; important topics include sparse signal detection and estimation of the proportion of the
nonnull effects. Section 3 focuses on multiple testing with FDR control. Several effective simul-
taneous testing procedures under various settings are presented. Open problems and other issues
are discussed in Section 4.

2. GLOBAL INFERENCE PROBLEMS

Global inference problems include the testing and estimation of unknown parameters that capture
the overall structure of all units. Under the mixture model (Equation 1), we study a class of
interrelated global inference problems: (a) testing the global hypothesis (Equation 2), (b) estimating
the nonnull proportion εn, and (c) estimating the null distribution F0.

2.1. Detection of Sparse Signals

The signal detection concerns testing against the global null hypothesis that there is no signal of
interest in a data set. The problem arises in many applications where a large number of variables
are measured and only a small proportion of them possibly carry signal information. For example,
in financial markets, it is crucial to detect anomalies in the early stage, when only a small fraction
of firms or markets are adversely affected. Other examples include the detection of disease out-
breaks, credit card fraud, and covert communication. In this section, we begin with the theory and
methodology of a simple model and then move to more complicated settings.

2.1.1. Detection boundary in homoscedastic Gaussian mixtures. Suppose one observes
X 1, . . . , Xn and wishes to test global hypotheses

Hn
0 : X 1, . . . , Xn

i.i.d.∼ N (0, 1) 4.

versus Hn
1 : X 1, . . . , Xn

i.i.d.∼ (1 − εn)N (0, 1) + εnN (μn, 1).

We consider the following choices of (εn,μn) that are calibrated with a pair of parameters (β, r):

εn = n−β , μn =
√

2r log n, 1/2 < β < 1, 0 < r < 1.

This β–r range means that the fraction of signals is small and the magnitude of the signals is
only moderately large. This calibration leads to an interesting and subtle global testing problem
(Donoho & Jin 2004, Meinshausen & Rice 2006, Cai et al. 2007).
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Figure 1
The detection boundary (dashed line) divides the β-r plane into the undetectable and detectable regions. It
provides an optimality benchmark for the global testing problem (Equation 4). The higher criticism
procedure attains the boundary and is, thus, fully efficient. Cai et al. (2007) show that εn can be estimated
consistently in the entire detectable region. The classification boundary (solid line) (Cai et al. 2007, Cai &
Sun 2016) gives the precise condition under which the observations can be separated into signals and noises
with a negligible misclassification rate.

There are two main goals of this analysis. The first is to determine the detection boundary,
which gives the smallest possible signal strength r as a function of the sparsity parameter β
such that reliable detection is possible. The second is to construct adaptive optimal tests, which
simultaneously achieve vanishing probability of error for all values of (r ,β) inside the detectable
region.

Under Equation 4, Ingster (1998) and Donoho & Jin (2004) show that there exists a detection
boundary

r∗(β) =
{
β − 1

2 , 1/2 < β ≤ 3/4,
(1 −√1 − β)2, 3/4 < β < 1,

5.

which separates the testing problem into two regions: the detectable region and the undetectable
region (Figure 1). When (β, r) belongs to the interior of the undetectable region, the sum of
type I and type II errors for testing the global null must tend to 1 and no test can asymptotically
distinguish the two hypotheses contained in Equation 4. However, when (β, r) belongs to the
interior of the detectable region, there are tests for which both type I and type II errors tend to
zero. In applications such as the identification of skilled fund managers, it is desirable to precisely
select the fund managers who have true stock-picking skills. The goal is more ambitious and can
only be achieved in a subset of the detection region where r > β (the classifiable region; Cai &
Sun 2016). Inside the classifiable region, observations can be separated into null cases and nonnull
cases with negligible classification errors.
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2.1.2. Methodologies for sparse detection. In the very sparse situation 3/4 < β < 1, most
tests based on empirical moments have no power in detection. To construct adaptive optimal
procedures, Ingster (1998) considers generalized likelihood ratio (GLR) tests over a growing
discretized set of (β, r) pairs and establishes their asymptotic adaptive optimality. A more ele-
gant solution is provided by Donoho & Jin (2004), who propose a testing procedure based on
Tukey’s higher criticism (HC) statistic and show that it attains the optimal detection boundary
(Equation 5).

The HC test consists of three simple steps. First, for each 1 ≤ i ≤ n, obtain a p-value by
pi = �̄(Yi ) ≡ P{N (0, 1) ≥ Yi }, where �̄ = 1 −� is the survival function of N (0, 1). Second, sort
the p-values in the ascending order p(1) < p(2) < · · · < p(n). Last, define the HC statistic as

HC∗
n = max

{1≤i≤n}
HCn,i , 6.

where HCn,i = √
n
[

i/n−p(i )√
p(i )(1−p(i ))

]
, and reject the null hypothesis H0 when HC∗

n is large. The key

ideas can be illustrated as follows. When Y ∼ N (0, In) holds true, we have pi
i.i.d.∼ U (0, 1), and so

HCn,i ≈ N (0, 1). Therefore, by the well-known results from empirical processes (e.g., Shorack &
Wellner 2009), it follows that HC∗

n ≈ √2 log log n, which grows to ∞ very slowly. In contrast, if
Y ∼ N (μ, In), where some of the coordinates of μ are nonzero, then HCn,i has an elevated mean
for some i , and HC∗

n could grow to ∞ algebraically fast. Consequently, the HC test is able to
separate two hypotheses even in the very sparse case. Unlike the GLR test, the HC test is optimally
adaptive, in the sense that it attains the detection boundary without requiring knowledge of the
unknown parameters (β, r).

The above results have been generalized along various directions. Jager & Wellner (2007)
propose a family of goodness-of-fit tests based on the Rényi divergences, including the HC test as
a special case. The detection boundary with correlated noise and known variance is established by
Hall & Jin (2010), who show that a modified version of the HC test achieves the corresponding
optimal boundary.

2.1.3. Signal detection under general mixture models. The homoscedastic Gaussian mixture
(Equation 4) is highly restrictive and idealized. In many applications, the signal strength varies
among the nonnull cases, violating the assumption of constant μn under the alternative. A natural
question is the following: What is the detection boundary if μn varies with a distribution Pn? Cai
et al. (2011) consider a heteroscedastic Gaussian mixture model, which can be viewed as taking
the signal strength under the alternative to be Pn = N (An, τ 2). If σ 2 is written for 1 + τ 2, then,
under such a model, the detection problem aims to test

Hn
0 : Yi

i.i.d.∼ N (0, 1) 7.

versus Hn
1 : Yi

i.i.d.∼ (1 − εn)N (0, 1) + εnN (An, σ 2).

Cai et al. (2011) discover that the detection problem behaves very differently in two regimes: the
sparse regime, where 1/2 < β < 1, and the dense regime, where 0 < β ≤ 1/2. Furthermore,
they show that a double-sided version of the HC test is optimally adaptive in the whole detectable
region in both the sparse and dense regimes, in spite of the very different detection boundaries
and heteroscedasticity effects in the two regimes. Classical methods have treated the detections of
sparse and dense signals separately. In practice, however, the information of the signal sparsity is
usually unknown, and the adaptivity of the modified HC test is, thus, a practically useful property.

Cai & Wu (2014) consider the problem of sparse mixture detection in a more general model
(Equation 1) where the distributions are not necessarily Gaussian and the nonnull effects are
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not necessarily a binary vector. They obtain an explicit formula for the fundamental limit of the
general testing problem under mild conditions on the mixture, which are specifically satisfied by
the Gaussian and generalized Gaussian null distributions. These general results recover and extend
all previously mentioned detection boundary results in a unified manner. The optimal adaptivity of
the HC procedure is also generalized far beyond the setup in the works of Ingster (1998), Donoho
& Jin (2004), and Cai et al. (2011). In the most general case, the detection boundary is determined
by the asymptotic behavior of the log-likelihood ratio log dF0

dF1
evaluated at an appropriate quantile

of the null distribution.

2.2. Estimation of the Proportion of Nonnull Effects

The proportion of nonnull effects is an important quantity that is of significant interest in its own
right. For example, in financial markets, investors are interested in knowing the proportion of fund
managers who possess true stock-picking skills. The proportion of nonnull effects is also one of
the key quantities in the implementation of many large-scale multiple testing procedures (see, for
example, Efron et al. 2001, Storey 2007, Sun & Cai 2007). The development of useful estimates
of εn, along with the corresponding statistical analysis, is a challenging task (for recent work, see
Langaas et al. 2005, Meinshausen & Rice 2006, Cai et al. 2007, Jin & Cai 2007, Cai & Jin 2010).

2.2.1. Tail-based approach. Schweder & Spjøtvoll (1982) propose an intuitive method for
estimating the proportion of null hypotheses using p-value plots. The methodology is devel-
oped for the general mixture model (Equation 1). To illustrate how it works, we simulate n =
1,000 observations from a simple two-point normal mixture F (x) = (1 − εn)N (0, 1) + εnN (2, 1).
The proportion of nonnull hypotheses is εn = 0.2. The histogram of the p-values is shown in
Figure 2a. Under the sparsity assumption, the majority of large p-values should come from the
null distribution. Let λ be a sufficiently large threshold, say λ = 0.5. Denote W (λ) = #{i : pi > λ}.
Because the p-values to the right of the threshold roughly follow a uniform distribution, the ex-
pected counts can be approximated as E{W (λ)} ≈ n(1−εn)(1−λ). Setting the expected and actual
counts equal, we obtain an estimate

ε̂n(λ) = 1 − W (λ)
n(1 − λ)

. 8.

The p-value plotting method proposed by Schweder & Spjøtvoll (1982) is described in Figure 2b.
Benjamini & Hochberg (2000) formalize this graphical method as an asymptotically equivalent
stepwise least-slope estimator (see also Benjamini et al. 2006).

Langaas et al. (2005) show that the estimate given by Equation 8 always has a downward bias,
i.e., E{ε̂n(λ)} ≤ εn(λ) for all λ. There is a tradeoff in the choice of λ: A larger λ would reduce
the bias but increase the variance. To choose a proper λ, Storey (2002) and Storey & Tibshirani
(2003) propose a bootstrapping method and a spline-smoothing method, respectively. Langaas
et al. (2005) investigate the choice of λ systematically and develop a class of estimators based on
nonparametric maximum likelihood estimates (MLEs).

However, tail-based methods are, in general, biased; they are only consistent in a limited class
of models satisfying the so-called purity condition (i.e., the nonnull density has thinner tails than
that of a standard normal). Moreover, the data tail is not scale invariant, and consequently, the
accuracy of tail-based methods depends on the degree of heteroscedasticity of the data.

2.2.2. Frequency-domain approach. Jin & Cai (2007) demonstrate that information on the
null distribution and nonnull proportion is well-preserved in the frequency domain but not in the
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Figure 2
Tail-based methods for estimating εn. Data are simulated from a two-point normal mixture model 0.8 · N (0, 1) + 0.2 · N (2, 1).
(a) Histogram of p-values, illustrating Equation 8 with λ = 0.5. The p-values to the right of the red line (light gray bars) follow a
uniform distribution approximately. (b) The graphical solution of Schweder & Spjøtvoll (1982). The gray curve plots 1 − pi against
their rank. A horizontal line is fitted through the left portion of the gray curve and extended all the way to the right via an eyeball
method. The circle represents the intersection point, which gives the estimated proportion of null cases (blue dashed line). The
intersection point (unfilled circle) shows that the estimated proportion of null cases is 0.8.

spatial domain. They further propose a frequency-domain approach to estimating the proportion.
The estimator is robust against heteroscedasticity and has been shown to be consistent for a wide
class of parameter spaces. Numerical results demonstrate that it outperforms competing tail-based
methods.

Consider the Gaussian mixture model

Xi
i.i.d.∼ (1 − εn)N (μ0, σ 2

0 ) + εn Qn, i = 1, . . . , n, 9.

where N (μ0, σ 2
0 ) is the null distribution with possibly unknown parameters μ0 and σ 2

0 , and Qn is
a general Gaussian location-scale mixture with the density q (x) = ∫ 1

σ
φ( x−μ

σ
)dHn(μ, σ ) for some

mixing distribution Hn. We discuss only the case with known null parameters (see Jin & Cai 2007
for a modified procedure for the case with unknown null parameters). Then, we can renormalize
Xj and assume, without loss of generality, that μ0 = 0 and σ0 = 1. The marginal density f of Xj

becomes

f (x) = (1 − εn)φ(x) + εn

∫
φ

(
x − μ

σ

)
dHn(μ, σ ). 10.

Jin & Cai’s (2007) method can be described as follows. Introduce the empirical characteristic func-

tion ϕn(t) = 1
n

∑n
j=1 e it X j and its expectation, the characteristic function ϕ(t) = 1

n

∑n
j=1 e itμ j −

σ2
j t2

2 ,
where i = √−1. Let ω(ξ ) be a bounded, continuous, and symmetric density function supported

in (−1, 1). Define the phase function as ψn(t;ω) = ∫
ω(ξ )e

t2ξ2
2 ϕn(tξ )dξ. Fix γ ∈ (0, 1/2) and let
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tn(γ ) = inf{t : t > 0, |ϕ(t)| ≤ n−γ }; the estimator is defined as

ε̂n(γ ;ω) = 1 − Re
{
ψn(tn(γ );ω)

}
, 11.

where Re(z) stands for the real part of z. In this case, the phase function ψn(t) is used to obtain an
estimate of εn, and the choice of γ reflects the bias–variance trade-off in the estimate. Typically,
we set γ = 0.1 (see Cai & Jin 2010 for more discussions). In studies by Jin & Cai (2007) and Jin
(2008), three different choices of ω(ξ ) are recommended, namely the uniform density, the triangle
density, and the smooth density that is proportional to exp

(
− 1

1−|ξ |2
)

· 1{|ξ |<1}. In our numerical
experiments, the triangle density tends to work slightly better. Cai & Jin (2010) show that choosing
ω to be the point mass at 1 leads to an asymptotically rate-optimal estimator of εn.

2.2.3. Optimality theory. The detection theory developed by Ingster (1998) and Donoho &
Jin (2004) provides a benchmark for a theory of consistent estimation. However, the theoretical
analysis for estimation of the proportion contains further challenges that are not present in the
detection problem. For example, the procedure of Meinshausen & Rice (2006) is only capable of
estimating εn consistently on a subset of the detectable region, failing to achieve the optimality
benchmark of the detection boundary. Cai et al. (2007) develop an effective data-driven method for

a two-point homoscedastic Gaussian mixture model Xi
i.i.d.∼ (1−εn)N (0, 1)+εnN (μn, 1), 1 ≤ i ≤ n,

and show that the estimator is rate optimal within a logarithmic factor. In contrast to the results
of Meinshausen & Rice (2006), the results of Cai et al. (2007) imply that it is possible to estimate
εn consistently over the entire detectable region.

The optimality theory for estimating εn is further developed by Cai & Jin (2010) for the general
Gaussian mixture model (Equation 9). Consider γ as defined in Equation 11. Cai & Jin (2010)
introduce a modified estimator

ε̂n(γ ) =
[

1 − 1
n

n∑
j=1

e
t2
2 cos(t X j )

]∣∣∣∣∣
t=

√
2γ log n

= 1 − n−(1−γ )
n∑

j=1

cos
(√

2γ log nX j

)
. 12.

The estimator ε̂n(γ ) given in Equation 12 can be viewed as a special case of ε̂n(γ ;ω), where instead
of being a density function, as in Equation 11, ω is a point mass concentrated at 1. Cai & Jin (2010)
obtain the convergence rate of the proposed estimator ε̂n(γ ) and establish a matching lower bound
for the minimax rate. The results show that the estimator ε̂n(γ ) given in Equation 12 adaptively
attains the optimal rate of convergence.

2.3. Estimation of the Null Distribution

Conventionally, F0 is assumed to be known and is referred to as the theoretical null. Efron (2004)
argues that, in large-scale inference problems, the use of the theoretical null is incorrect and the
choice of the null distribution has a huge impact on subsequent analysis. Efron further proposes
the concept of the empirical null and argues that the empirical evidence in the data determines
the normal state and that the null distribution should be estimated from the data. For the AYP
example in Section 1.1, the empirical null is estimated to be N (1.89, 1.812), which is substan-
tially different from the theoretical null N (0, 1). This deviation can be attributed to unobserved
covariates, unknown correlations, or a large proportion of uninterestingly small effects.

Efron (2004) proposes a simple method to estimate the null parameters utilizing the central
peak of the histogram. Jin & Cai (2007) propose a class of more powerful estimators based on
the empirical characteristic function and Fourier analysis. They further show that the proposed
estimators are uniformly consistent over a wide class of parameters. Optimality theory is developed

420 Cai · Sun

A
nn

u.
 R

ev
. E

co
n.

 2
01

7.
9:

41
1-

43
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

So
ut

he
rn

 C
al

if
or

ni
a 

(U
SC

) 
on

 1
1/

21
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



EC09CH16-Cai ARI 25 July 2017 17:10

by Cai & Jin (2010). The empirical null approach of Efron (2004) and the estimation methods
of Jin & Cai (2007) assume that all null cases follow a common distribution N (μ0, σ 2

0 ). However,
in applications such as the AYP study, a common null distribution does not exist. This issue was
considered by Sun & McLain (2012), who extend the method of Jin & Cai (2007) to estimate the
composite null distribution with an external covariate.

3. MULTIPLE TESTING PROBLEMS

Multiple testing is a useful approach to extracting valuable insights from massive data. Recent
developments in multiple testing, epitomized by FDR methodologies, have greatly influenced a
wide range of scientific and business disciplines. This section reviews some important concepts
and recent progress in this field.

3.1. Multiplicity, Error Rate, and Power Concepts

Two types of errors may be committed when performing a hypothesis test: rejecting a hypothesis
when it is null (type I error) or failing to reject a hypothesis when it is nonnull (type II error).
A type I error occurs when one finds a pattern that does not exist in the data (false discovery),
whereas a type II error occurs when one misses an interesting pattern that actually exists (missed
discovery). In practice, one cannot entirely eliminate the chance of committing decision errors.
However, the consequences of the two types of errors are usually different, with a type I error
being regarded as a more serious mistake. Define type I and type II error rates as the probability
of making type I and type II errors, respectively. The classical formulation in single-hypothesis
testing aims to control the type I error rate at a prespecified level α while minimizing the type II
error rate.

When n hypotheses are tested simultaneously, the outcomes of all tests can be summarized as
in Table 1. In the multiple testing setting, it is desirable to assess the overall performance of a
testing procedure by combining all decisions together. The multiplicity, which leads to inflation of
type I errors, becomes a serious issue. Next, we discuss some widely used concepts for measuring
the overall error rate in multiple testing.

3.1.1. Family-wise error rate. The family-wise error rate (FWER) is defined as the probability
of making at least one type I error in the family, e.g., FWER = P(N 10 ≥ 1), where N 10 is the
number of false positive findings. The FWER has been widely used as an overall error measure
when multiple hypotheses are tested at the same time. A per-comparison error rate procedure,
which repeatedly tests each hypothesis at level α, fails to control the FWER. The most well-
known FWER procedure is the Bonferroni correction, which conducts individual tests at level
α/m instead of level α. The Bonferroni method can be further improved by stepwise methods,
such as Holm’s procedure and Hommel’s procedure (Holm 1979, Hochberg 1988, Hommel 1988),
or resampling-based methods (Westfall & Young 1993). We refer interested readers to Shaffer

Table 1 Classification of tested hypotheses

Hypotheses Claimed nonsignificant Claimed significant Total

Null N 00 N 10 n0

Nonnull N 01 N 11 n1

Total S R n
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(1995) and Hochberg & Tamhane (2009) for an extensive review of FWER methodologies. A
useful extension of the FWER is the k-FWER, which is defined as the probability of making
k or more type I errors in the family. The k-FWER-controlling procedures are more powerful
than FWER methods (for recent work, see Lehmann & Romano 2005a, Romano & Shaikh 2006,
Sarkar 2007).

3.1.2. False discovery rate. The FWER is a very strict criterion. When thousands or even
millions of hypotheses are tested simultaneously, the FWER procedures often become excessively
conservative and fail to identify most useful signals. This often results in the waste of expensive
studies and possible financial losses. In large-scale settings, a more powerful and practical error
rate concept is the FDR (Benjamini & Hochberg 1995). Under the FDR paradigm, one is willing
to tolerate some type I errors provided that the number is small relative to the total number of
rejections. Define the false discovery proportion (FDP) as

FDP =
{

N10/R, if R > 0
0, if R = 0

. 13.

Thus, the FDR is the expectation of the FDP:

FDR = E(FDP) = E

(
N10

R

∣∣∣∣ R > 0
)

P(R > 0). 14.

The FDR concept reflects the trade-off between false discoveries and true discoveries in practice
and is connected to minimax estimation theory (Abramovich et al. 2006) and compound decision
theory (Sun & Cai 2007). Other closely related measures include the positive FDR (pFDR; Storey
2003) and the marginal FDR (mFDR; Genovese & Wasserman 2002). The differences among
various FDR measures seem to be nonessential in large-scale testing problems. For example,
the pFDR and mFDR are equivalent when test statistics come from a random mixture model
(Storey 2003). Genovese & Wasserman (2002) show that, under mild conditions, mFDR = FDR +
O(n−1/2). The FDR is fundamentally different from the FWER because it provides a powerful
and cost-effective framework to handle large-scale testing problems. Although the subject of FDR
is still relatively new, it has already exhibited enormous impacts on many scientific and business
fields.

3.1.3. Power and optimality. In single-hypothesis testing, the power is defined as the probability
of correctly rejecting a nonnull hypothesis. The fundamental Neyman-Pearson lemma shows that
the likelihood ratio test is the most powerful test in the sense that it maximizes the power at a
prespecified test level α.

The power concept can be generalized in different ways as we move to multiple testing. We
use the expected number of true positives (ETP),

ETP = E(N11), 15.

in this article. Other related measures include the average power (Spjøtvoll 1972, Efron 2007b,
Storey 2007), the false negative/nondiscovery rate (FNR; Genovese & Wasserman 2002, Sarkar
2004), FNR = E

(N 01
S

∣∣ S > 0
)
P(S > 0), and the missed discovery rate (MDR; Taylor et al. 2005).

Under mild conditions (Cao et al. 2013), maximizing the ETP is asymptotically equivalent to
minimizing the FNR or MDR. An FDR procedure is said to be valid if it controls the FDR at the
nominal level α and optimal if it has the largest ETP among all valid FDR procedures at level α.
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Figure 3
A graphical illustration of the Benjamini-Hochberg procedure; filled and unfilled circles stand for nonnull
and null cases, respectively. The false discovery rate thresholds are computed as the largest intersection point
of the p-value curve and the straight line, the slope of which corresponds to the test level. At α = 0.1,
9 hypotheses are rejected with no false positive. At α = 0.2, 16 hypotheses are rejected with three false
positives.

3.2. p-Value-Based Methodologies for False Discovery Rate Control

In single-hypothesis testing, the p-value is a fundamental statistic: We decide whether a hypothesis
should be rejected by comparing the p-value with the test levelα. A widely used strategy in multiple
testing is to first rank the hypotheses according to individual p-values and then choose a cutoff
along the ranking. This section reviews p-value-based FDR methodologies; their limitations and
optimal FDR control are discussed in Section 3.3.

3.2.1. Benjamini-Hochberg procedure. Let {pi : 1 ≤ i ≤ n} be the p-values from individual
tests. Let p(1) ≤ p(2) ≤ · · · ≤ p(n) denote the ordered p-values and H(1), . . . , H(n) the corresponding
hypotheses. The Benjamini-Hochberg (BH) procedure first uses a step-up comparison to decide
a p-value threshold,

Let k = max{i : p(i ) ≤ iα/n}, 16.

and then rejects all hypotheses H( j ), j = 1, . . . , k. This method can be intuitively explained as
follows. Suppose the cutoff is p(i ) and i hypotheses are rejected. Because the null p-values follow
a uniform distribution, one expects to have n0 p(i ) significant p-values from the null, and the FDP
can be estimated by Q̂ j = n0 p(i )/ i . In practice, n0 is not known but can be approximated by n.
The corresponding estimated FDP is then Q̃ j = np(i )/ i . To maximize the power, we choose the
largest i such that Q̃i ≤ α, which leads directly to the BH procedure (Equation 16).

The BH procedure is easy to implement and has a simple graphical representation. To illustrate,
we simulate n = 60 observations from a random mixture model (1 − εn)N (0, 1) + εnN (2.5, 1) with
εn = 0.25. In Figure 3, the discrete points are ranked p-values plotted against their indices. The
red and blue straight lines correspond to the right-hand side of Equation 16, where the slope is
the prespecified FDR level α. The p-value threshold is given by the last crossing point between
the p-value curve and the straight line.
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Benjamini & Hochberg (1995) show that the procedure described by Equation 16 controls the
FDR at the nominal level when the p-values are independent. The dependence issue is important
and is discussed in Section 3.5. The BH threshold is usually larger than the FWER threshold,
leading to a more powerful procedure with more rejections. The power gain over FWER methods
becomes more pronounced as the number of tests increases. This makes the method more suitable
for large-scale simultaneous inference.

3.2.2. Adaptive p-value procedure. The BH procedure is conservative because it controls the
FDR at level (1 − εn)α instead of level α, where εn is the proportion of nonnull cases. Benjamini
& Hochberg (2000), Genovese & Wasserman (2002), and Storey (2002) propose to estimate εn

from data and further utilize it to construct more powerful procedures.
Let ε̂n be an estimate of εn. Then, the adaptive p-value procedure (Benjamini & Hochberg

2000) operates as follows:

Let k = max{i : p(i ) ≤ iα/[(1 − ε̂n)n]}, then reject all H(i ), i ≤ k. 17.

We can see that, in Equation 17, the BH procedure is carried out at an adjusted FDR level
α/(1− ε̂n). Therefore, by incorporating the estimated proportion, the procedure is adaptive to the
sparsity information in the data. Numerical results show that the power of the BH method can be
improved, and the efficiency gain increases with εn.

3.2.3. Oracle and plug-in p-value procedures. Let G1(t) be the cumulative distribution func-
tion (CDF) of the p-value of a nonnull case and G(t) be the mixture CDF. Consider a random
mixture model for p-values:

G(t) = (1 − εn)t + εnG1(t). 18.

The mFDR for a given cutoff t (e.g., we reject Hi if pi < t) is defined as Q(t) = E(N 10)
E(R) = (1−εn )t

G(t) .

If G1 is concave, then the solution to Q(t) = α, denoted by u∗, is unique. The oracle p-value
procedure rejects Hi if pi < u∗. It is optimal in the sense that it has the smallest FNR among
all p-value-based procedures at mFDR level α (Genovese & Wasserman 2002). However, this
optimality result only holds within the class of p-value-based methods.

When G and εn are unknown, we use their estimates Ĝ and ε̂n to obtain the estimated FDR level
Q̂(t) = (1 − ε̂n)t/Ĝ(t). The estimation of ε̂n is discussed in Section 2.2. G is commonly estimated
by the empirical CDF Ĝ(t) = m−1∑m

i=1 I{pi < t}, where I(·) is an indicator function. Thus, a class
of plug-in FDR procedures can be constructed (Genovese & Wasserman 2002, 2004) as follows:

Let t( p̂ , Ĝ) = sup{t : Q̂(t) ≤ α}. Reject Hi0 if pi < t( p̂ , Ĝ). 19.

Equation 19 reveals the connection between a multiple testing problem and an FDR estimation
problem. The BH procedure and adaptive p-value procedure can be identified as special cases in
the class. For example, if we choose ε̂n = 0 and Ĝ(t) as the empirical CDF, then Equation 19
reduces to the well-known BH procedure. Genovese & Wasserman (2004) develop a stochastic
process framework for multiple testing and show that, when consistent estimates of G and εn are
chosen, the class of plug-in procedures (Equation 19) is asymptotically valid and exhaustive. That
is, the FDR is controlled at level α + o (1).

3.2.4. The q-value procedure. The p-value has a nice interpretation and provides a convenient
framework for testing a single hypothesis, e.g., we reject the null if the p-value is less than α. The
q-value (Storey 2003) can be viewed as an analog of the p-value in the FDR paradigm in the sense
that, if we want to carry out an FDR analysis at level α, then we can obtain the q-value for each test
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and reject Hi0 if its q-value is less than α. The q-value has gained great popularity in large-scale
“omics” research, such as research in genomics and proteomics (Tusher et al. 2001) due to its
convenience and nice interpretation.

Roughly speaking, the q-value of a test measures the fraction of false discoveries when that
test is just rejected. Consider the random mixture model (Equation 18): The pFDR is defined as
pFDR(t) = E

(N 10
R

∣∣ R > 0
) = (1 − εn)t/G(t), where t is the p-value cutoff. The q-value of Hi is

the smallest FDR level such that Hi can be rejected:

q (pi ) = inf
t≥pi

{pFDR(t)} = inf
t≥pi

{
(1 − εn)t

G(t)

}
. 20.

In practice, we estimate εn and G as ε̂n and Ĝ. Suppose all hypotheses are arranged in ascending
order of p-values p(1), . . . , p(n). Then, the q-value procedure works as follows:

Let q̂
(

p(i )
) = (1 − ε̂n)p(i )

Ĝ
(
p(i )
) . Reject H(i ) if q̂

(
p(i )
) ≤ α. 21.

The q-value is computed for an individual case but has a global interpretation: It reflects the
relative significance of a single test by taking into account all of the p-values from all other tests.
By comparing Equation 21 with Equation 19, we can see that the q-value procedure belongs to
the class of plug-in methods.

3.2.5. Other error rate concepts and methodologies. In situations where the FDP is highly
variable, the false discovery exceedance (FDX; Genovese & Wasserman 2004) provides a useful
alternative to the FDR. Let 0 ≤ τ ≤ 1 be a prespecified tolerance level; the FDX at level τ
is FDXτ = P(FDP > τ ), the tail probability that the FDP exceeds a given bound. The goal is
to construct a testing procedure satisfying FDX ≤ α. The FDX control takes into account the
variability of the FDP and is desirable with correlated tests where variability of FDP is very high
(see Lehmann & Romano 2005b, Genovese & Wasserman 2006, and Roquain & Villers 2011 for
recent development in FDX theories and methodologies).

Other important p-value-based FDR procedures include the augmentation procedure (van
der Laan et al. 2004), the two-stage linear procedure (Benjamini et al. 2006), and resampling
procedures (Tusher et al. 2001). The resampling methods are attractive in many applications
because the p-values and adjusted p-values can be estimated without making any parametric
assumptions on the joint distribution of the test statistics. Moreover, the correlation structure
and distributional characteristics of the data can be preserved. Algorithms for computing adjusted
p-values are introduced, for example, by Westfall & Young (1993) and Dudoit et al. (2003).

There are a range of other error measures in the multiple testing literature, including the
FWER, k-FWER, FDR, generalized FDR, mFDR, pFDR, FDX, false cluster rate, weighted
FDR, overall FDR, outer-node FDR, and focus-level FDR. These concepts are useful but may
cause confusion. Benjamini (2010) provides a good summary of error measures and discusses how
to match proper error rates with inference needs.

3.3. Optimal False Discovery Rate Control: A Decision-Theoretic Approach

In multiple testing, we aim to separate nonnull cases from null cases. A testing procedure can be
represented by a binary rule δ = (δ1, . . . , δn) ∈ {0, 1}n, where δi = 0/1 indicates that we claim that
case i is null/nonnull. Multiple testing is a compound decision problem (Robbins 1951) because
all tests are combined and evaluated together.
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The development of a multiple testing procedure involves two steps: (a) deriving a test statistic
Ti that ranks hypotheses from the most significant to the least significant and (b) setting a cutoff
t for Ti to control the FDR at α. This leads to a thresholding rule,

δi = I(Ti < t), i = 1, . . . , n. 22.

We can see that Ti , which determines the ranking of hypotheses, plays a central role in multiple
testing. In conventional FDR procedures, the default choice for Ti has been the p-value. Sun &
Cai (2007) develop a compound decision theoretic framework and show that the p-value is not a
fundamental building block in large-scale testing problems. The next sections survey results on
optimal and asymptotically optimal FDR procedures and show that all p-value methods can be
uniformly improved.

3.3.1. Oracle false discovery rate procedure. Consider an ideal setup where an oracle knows
εn, f0, and f1. To develop the oracle rule, we consider two questions in turn: (a) What is the oracle
statistic that gives the optimal ranking of all tests? (b) What is the oracle cutoff that controls the
FDR and maximizes the ETP?

Consider Equation 1. Suppose we obtain a z-value from each test. Sun & Cai (2007) show that
the optimal test statistic in the oracle setting is the local FDR (lFDR):

lFDR(zi ) = (1 − εn) f0(zi )
f (zi )

. 23.

Now consider a class of FDR procedures of the form δi (t) = I{lFDR(zi ) < t} for 1 ≤ i ≤ n, where
0 ≤ t ≤ 1 is a cutoff. The next step is to find the oracle cutoff that controls the FDR at level α with
the largest ETP (Equation 15). To this end, use QOR(t) to denote the FDR level when the cutoff
for lFDR is t. Define the oracle cutoff as the largest cutoff allowed under the FDR constraint
tOR = sup{t : QOR(t) ≤ α}. Finally, we introduce the oracle FDR procedure as a thresholding rule
based on lFDR and tOR: δOR = (δi

OR : 1 ≤ i ≤ n), where

δi
OR = I{lFDR(zi ) < tOR}. 24.

Sun & Cai (2007) show that the oracle rule (Equation 24) is optimal for FDR control in the sense
that it has the largest ETP among all FDR procedures at level α.

The lFDR statistic has a Bayesian interpretation: lFDR(zi ) = P(case i is null | zi ) (Efron et al.
2001). It captures all important distributional information in the mixture model (Equation 1). The
expression in Equation 23 implies that we actually rank the hypotheses according to the ratio f0/ f
and that the ranking is more efficient than that based on p-values. An interesting consequence
of using the lFDR statistic is that we may accept a more extreme observation while rejecting a
less extreme observation, which implies that the rejection region is asymmetric. This point is
illustrated in Section 3.3.3 using data on mutual funds.

3.3.2. A data-driven procedure. The oracle procedure cannot be implemented in practice be-
cause both the lFDR and tOR are unknown. In this section, we discuss how to estimate the unknown
quantities. Let ε̂n, f̂0, and f̂ be estimates of εn, f0, and f , respectively. The estimation of εn is
discussed in Section 2. The null density f0 is either taken as a known theoretical null, i.e., the
standard normal density, or estimated as an empirical null using methods proposed by Efron
(2004) and Jin & Cai (2007). The mixture density f can be obtained as a standard kernel density
estimator with bandwidth chosen by cross validation (Silverman 1986). Then, the lFDR statistic
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can be estimated as

l̂FDRi = (1 − ε̂n) f̂0(zi )
f̂ (zi )

.

Next, we derive a data-driven procedure that mimics the oracle procedure. We use the idea of
ranking followed by thresholding to motivate a stepwise method. Use l̂FDR(1) ≤ · · · ≤ l̂FDR(n)

to denote the ordered lFDR statistics. Suppose j hypotheses are rejected along the ranking; then,
the actual FDR level can be estimated as Q̂OR( j ) = 1

j

∑ j
i=1 l̂FDR(i ), the moving average of the top

j ordered statistics (Sun & Cai 2007). To fulfill the FDR constraint and maximize the power, we
propose the following stepwise procedure:

Let k = max

{
j :

1
j

j∑
i=1

l̂FDR(i ) ≤ α

}
, then reject all H(i )0, i = 1, . . . , k. 25.

The goals of global FDR control and individual case interpretation are naturally unified in the
data-driven procedure (Equation 25). Moreover, with the consistent estimators proposed by Jin
& Cai (2007), Sun & Cai (2007) show that the data-driven procedure is asymptotically valid and
optimal in the sense that the data-driven procedure controls the FDR at level α+ o (1) and has an
FNR level of FNROR + o (1), where FNROR is the FNR level of the oracle procedure.

3.3.3. Analysis of mutual funds data: a comparison of p-values and local false discovery
rate. Consider a normal mixture model with three components,

(1 − ε−
n − ε+

n )N (0, 1) + ε−
n N (μ−, 1) + ε−

n N (μ+, 1),

where ε−
n and ε+

n are the proportions of negative and positive nonnull cases, respectively. The
model is considered by Barras et al. (2010) for analysis of mutual funds data, where N (0, 1),
N (μ−, 1), and N (μ+, 1) are used to describe the distributions of zero alpha funds, unskilled funds,
and skilled funds, respectively. We choose a setting in which the main findings of Barras et al. (2010)
can be roughly matched. Specifically, n = 5,000 z-values are simulated from the mixture model
with μ− = −2.5, μ+ = 3, ε−

n = 0.15, and ε+
n = 0.05. Thus, many funds have underperformance

but few have outperformance. The histograms of zero, positive, and negative components are
illustrated in Figure 4, with a mixture density curve fitted to the observed bars.

In practice, we do not know the true states of nature but instead only observe a mixture of
the three types of funds. It is desirable to identify both skilled and unskilled funds. We apply the
BH procedure (Benjamini & Hochberg 1995), the adaptive p-value (AP; Benjamini & Hochberg
2000) procedure, and the data-driven lFDR procedure (Sun & Cai 2007) to the data set at α = 0.1.
The results are summarized in Table 2.

We can see that the lFDR procedure controls the FDP more precisely compared to the p-
value-based methods. Moreover, it correctly identifies more nonzero alpha funds compared to
the p-value-based methods. The efficiency gain is due to the adaptivity of the lFDR procedure.
Concretely, the mixture is an asymmetric distribution with ε−

n being higher than ε+
n ; thus, we

are more likely to find signals in the negative component. Therefore, it makes sense to adopt an
asymmetric rejection region when selecting nonzero alpha funds. The lFDR procedure is adaptive
in the sense that it produces asymmetric regions automatically (without having to estimate ε−

n and
ε+

n !). We can see from Figure 4 that the rejection region of the AP method is |zi | > 2.41, whereas
the rejection region of the lFDR procedure is zi < −2.18 and zi > 2.73. Interestingly, the lFDR
procedure rejects observation z = −2.2 but does not reject observation z = 2.6. This will never
be encountered by a p-value method, which always has symmetric rejection regions.
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Figure 4
Mutual funds example, showing symmetric versus asymmetric rejection regions. The normal mixture model is 0.8 · N (0, 1) +
0.15 · N (−2.5, 1) + 0.05 · N (3, 1) with a higher proportion of negative alpha funds. It makes sense to adopt an asymmetric rejection
region as one is more likely to find signals in the negative part. The local false discovery rate (lFDR) procedure allows us to accept an
observation located further away from 0 while rejecting an observation closer to 0. In contrast, p-value-based methods are not adaptive
to the asymmetry of the distribution. The rejection region of the lFDR method is given by z < −2.18 or z > 2.73. In contrast, the
rejection region of the adaptive p-value method is |z| > 2.41. The grey bars represent observations from the mixture distribution. The
green and red bars correspond to observations from N(−2.5, 1) and N(3, 1), respectively.

We then adjust the p-value threshold of BH as 0.0185, which leads to a symmetric rejection
region z < −2.35 and z > 2.35 with an FDP of 0.098 (the numbers of rejections and false positives
are 668 and 66, respectively; see the last row of Table 2). Thus the comparison is on an equal
footing. At the same FDP level, the lFDR method rejects more true positives than the p-value
method (626 versus 602). This demonstrates the superiority of the lFDR ranking.

3.4. Multiple Testing with External and Structural Information

Conventional multiple testing procedures implicitly assume that data are collected from repeated
or identical experimental conditions and, thus, that hypotheses are exchangeable. However, in
many applications, data are known to be collected from heterogeneous sources and form into
groups. Moreover, relevant domain knowledge, such as external covariates, scientific insights, prior

Table 2 Analysis summary for simulated mutual funds data

Methods
Number of
rejections

Number of true
rejections FDP Lower cutoff Upper cutoff

BH 572 532 0.07 −2.53 2.53

AP 633 579 0.085 −2.41 2.41

lFDR 694 626 0.098 −2.18 2.73

Adjusted BH 668 602 0.098 −2.35 2.35

Abbreviations: AP, adaptive p-value; BH, Benjamini-Hochberg; FDP, false discovery proportion; lFDR, local false discovery rate.
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data, and hierarchical structure, is often available alongside the primary data set in many studies.
Exploiting such information in an efficient manner promises to enhance both the interpretability
of research results and the precision of statistical inference.

3.4.1. Heterogeneity and grouping. The problem of multiple testing with groups and related
problems are studied by Efron (2008), Ferkingstad et al. (2008), Cai & Sun (2009), and Hu et al.
(2012), among others. For example, in the AYP study discussed in Section 1.1, the estimated
null densities of the z-values for large schools are much wider than those for medium and small
schools. In the brain imaging study considered by Schwartzman et al. (2008), the null cases for
the front and back halves of the brain center on different means, and the density of the back half
is narrower. The differences in the null distributions have significant impacts on the outcomes of
multiple testing procedures.

Efron (2008) introduces the multigroup mixture model to handle the heterogeneity in the data.
Suppose X 1, . . . , Xn can be divided into K groups:

Xki ∼ fk = (1 − π1k) fk0 + π1k fk1, i = 1, . . . , nk, k = 1, . . . , K . 26.

The group memberships are assumed to be known. Three strategies for testing grouped hypotheses
have been considered in the literature. First, the pooled analysis simply ignores the information of
group labels and conducts a global analysis on the combined sample at a given FDR level α. Efron
(2008) argues that a pooled FDR analysis is problematic because highly significant cases from
one group may be hidden among the nulls from another group, whereas insignificant cases may
possibly be enhanced. Efron (2008) suggests a second approach, the separate analysis, which first
conducts an FDR analysis at level α within each group and then combines the testing results from
all groups. Efron (2008) shows that the separate analysis controls the FDR. However, the choice
of identical FDR levels across all groups can be suboptimal. Cai & Sun (2009) show that both the
separate and pooled analyses can be uniformly improved by a third approach, the conditional lFDR
(clFDR) method, which enjoys features of both pooled and separate analyses. Let p̂k, f̂k0, and f̂k

be estimates of the unknown quantities in Equation 26. Then, the clFDR procedure operates as
follows:

1. Calculate the plug-in clFDR statistic ĉlFDRki = (1 − p̂k) f̂k0(xki )/ f̂k(xki ).
2. Combine and rank the plug-in clFDR values from all groups. Denote by

ĉlFDR(1), . . . , ĉlFDR(n) the ranked values and by H(1), . . . , H(n) the corresponding
hypotheses.

3. Reject all H(i ), i = 1, . . . , l , where l = max
{

i : (1/ i )
∑i

j=1 ĉlFDR( j ) ≤ α
}

.

It is important to note that, in the first step, the external information of group labels is utilized
to calculate the clFDR; this is the feature from the separate analysis. However, in the second
and third steps, the group labels are dropped and the rankings of all hypotheses are determined
globally; this is the feature from the pooled analysis. Cai & Sun (2009) show that the clFDR
procedure is asymptotically valid and optimal. Unlike in the separate analysis, the groupwise FDR
levels of the clFDR procedure, which are, in general, different from α, are adaptively weighted
among groups.

3.4.2. External weights. In multiple testing, the hypotheses being investigated often become
unequal in light of external information, which may be reflected by differential attitudes toward
the relative importance of testing units or the severity of decision errors. The use of weights
provides an effective strategy to incorporate informative domain knowledge in large-scale testing
problems. In the literature, various weighting methods have been advocated for a range of multiple
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comparison problems (Genovese et al. 2006, Roeder & Wasserman 2009, Roquain & Van De Wiel
2009). A popular scheme, referred to as the decision weights approach, involves modifying the
error criteria or power functions (Benjamini & Hochberg 1997). The idea is to employ two sets
of positive constants, a = {ai : i = 1, . . . , n} and b = {bi : i = 1, . . . , n}, to take into account the
costs and gains of multiple decisions. Let δi be the decision for Hi . The weighted false discovery
rate (wFDR) is defined as

wFDR = E

{
n∑

i=1

ai (1 − θi )δi

}
/E

(
n∑

i=1

aiδi

)
,

where ai is the weight indicating the severity of a false positive decision. For example, ai is taken as
the cluster size in the spatial cluster analyses conducted by Benjamini & Heller (2007) and Sun et al.
(2015). As a result, rejecting a larger cluster erroneously corresponds to a more severe decision
error. To compare the effectiveness of different weighted multiple testing procedures, we define
the ETP = E

(∑n
i=1 biθiδi

)
, where bi is the weight indicating the power gain when Hi is rejected

correctly. The use of bi provides a useful scheme to incorporate informative domain knowledge.
In spatial data analysis, correctly identifying a larger cluster that contains signal may correspond
to a larger bi , indicating a greater decision gain. With the combination of the concerns on both
the error criterion and power function, the goal in weighted multiple testing is to maximize the
ETP subject to the constraint wFDR ≤ α.

Basu et al. (2015) develop an asymptotically optimal solution to this problem. The key step
involves a conceptualization of the constrained optimization problem as an expanding knapsack
problem, followed by an application of the classical ideas in the Neyman-Pearson lemma. This
leads to a fast greedy algorithm that substantially speeds up conventional knapsack algorithms with
optimality guarantees. Moreover, the optimality theory reveals that the optimal ranking depends
on the prespecified wFDR level, an interesting phenomenon unknown in previous works.

3.4.3. Hierarchical structure and logical correlation. In many applications, the data are aggre-
gated to different resolution levels, and it is desirable to test hypotheses in a hierarchical fashion.
Hierarchical analysis is also useful in large-scale pattern recognition problems. When the signals
are sparse, it is desirable to first separate signals from massive and noisy data (testing) and then
determine the patterns of the selected signals (classification). The task can be described as finding
needles of various shapes in a haystack. Important applications include hierarchical testing in onco-
logical genetics, fault detection and classification in control engineering, and satellite surveillance
for coarse-to-fine interpretation of visual images. The pattern discovery process can be described
by a decision tree with multiple levels, where decisions are made at increasingly finer resolution
levels going from the top to the bottom of the tree. At each node of a given level, we have three
possible actions: (a) testing, i.e., deciding whether a unit contains one of the patterns of interest;
(b) classification, i.e., assigning the selected subjects to specific pattern categories (classification);
and (c) indecision, i.e., selecting a subject as a signal but not specifying its pattern.

In hierarchical testing, important error measures for summarizing the whole decision process
include the full-tree and outer-node FDRs (Yekutieli 2008), the focus-level FDR (Goeman &
Mansmann 2008), the mixed-directional FDR (Guo et al. 2010), and the overall FDR (Sun &
Wei 2015). Moreover, a hierarchical decision rule needs to fulfill a genuine logical relationship,
that is, a case is rejected only if its parent node is rejected. Various methods have been developed
for the adjustment of statistical significance according to the hierarchical structure, as well as the
logical and error rate constraints (see Blanchard & Geman 2005, Goeman & Mansmann 2008,
Meinshausen 2008, Yekutieli 2008, Goeman & Solari 2010, Sun & Wei 2015). Recent works
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on multiple comparison issues in multistage and sequential testing problems include those of
Benjamini et al. (2006), Lin (2006), Benjamini & Heller (2007), Dmitrienko et al. (2007), Posch
et al. (2009), Liang & Nettleton (2010), Sarkar et al. (2013), Benjamini & Bogomolov (2014), and
Cai & Sun (2016). Hierarchical testing is also related to the control of directional errors in multiple
testing (see Guo et al. 2010 and Goeman et al. 2010 for related theories and methodologies).

3.5. Multiple Testing Under Dependency

Observations arising from large-scale testing problems are often dependent. However, conven-
tional FDR procedures rely heavily on the independence assumption, and the correlation among
hypotheses is typically ignored. There are two important questions regarding the dependence
issue: (a) What is the impact of dependence on the conventional FDR analysis? (b) How can we
construct new FDR procedures for dependent tests?

3.5.1. Impact of dependence in multiple testing. The performance of a multiple testing pro-
cedure is reflected in both the power and validity. Benjamini & Yekutieli (2001) show that applying
the BH procedure at level α/(

∑n
i=1 1/ i ) always controls the FDR at level α under arbitrary depen-

dence among the p-values. However, such an adjustment is too conservative and often unnecessary
in practice. In the multiple testing literature, extensive efforts have been devoted to the study of
the impact of dependence on the validity of FDR control when applying the BH procedure to
dependent tests without any adjustments. The results can be roughly divided into two types.

First, it has been shown that the classical BH procedure is valid for controlling the FDR
under some regularity conditions (see, e.g., Benjamini & Yekutieli 2001, Sarkar 2002, Storey et al.
2004, Wu 2008, Clarke & Hall 2009). For many applications in economics and finance, these
assumptions do not hold. Practitioners should verify them carefully and proceed with caution.
Second, Efron (2007a) and Schwartzman & Lin (2011) show that correlation usually degrades
statistical accuracy, affecting both estimation and testing. High correlation also results in high
variability of testing results and, thus, irreproducibility of scientific findings (see Owen 2005 and
Finner et al. 2007 for related discussions). These results suggest that dependency has a negative
impact and must be adjusted for multiple testing, especially when the correlations are very high.
Leek & Storey (2008) and Friguet et al. (2009) study multiple testing under the factor models
and show that, by subtracting the common factors out, the dependence structure can be greatly
weakened. Efron (2007a) and Fan et al. (2012) discuss how to take into account the dependence
structure and obtain more accurate FDR estimates for a given p-value threshold.

The problem of FDR control under general dependence structures still requires much research.
For example, existing work has been focused mainly on validity, and the important power issue
has been largely ignored. In fact, most p-value-based methods suffer from efficiency loss when the
dependence structure is highly informative. More powerful testing procedures can be constructed
by exploiting the correlations between the tests. It remains an open problem to develop a general
framework to estimate the unknown dependence structure and then use it for efficient multiple
testing. We discuss in the following sections some recent progress in this direction, focusing on
settings where the dependency structures can be well estimated from data.

3.5.2. Exploiting dependence for multiple testing. Some empirical studies have demonstrated
that dependence can be utilized to improve the precision of inference. The idea is to aggregate
weak signals from individuals by exploiting high correlations. The works of Benjamini & Heller
(2007), Sun & Cai (2009), and Sun & Wei (2011) show that incorporating functional, spatial,
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and temporal correlations into a multiple testing procedure may greatly improve the power and
accuracy of conventional methods.

To see why the dependence structure can be helpful, consider the following example. Suppose
one observes a mixture of null and nonnull hypotheses and expects that the non-null cases will
appear in clusters. Suppose the observed sequence is

. . . , −2.8, −3.4, x1, −3.2, −2.9, . . . , 0.2, −0.3, x2, 0.01, 1, . . . ,

where x1 = x2 = 2. Heuristically, we can argue that x1 is likely to come from the nonnull
distribution because there is evidence in the sample that it is in a cluster with negative effects. In
contrast, x2 is likely to be a random large observation that comes from a cluster of null effects.
Therefore, it is natural to assign different significance levels to x1 and x2 even if the observed values
are the same. However, x1 and x2 have the same p-values if inspected alone. Next, we discuss how
to systematically incorporate the structural information among the hypotheses in multiple testing.
We first consider a simple and widely used model and then move to more complicated settings.

3.5.3. Hidden Markov models. The hidden Markov model (HMM) is a widely used and effective
tool for modeling the dependency structure (Rabiner 1989). Suppose we observe a mixture of
null and nonnull hypotheses and expect that the nonnulls appear in clusters. In an HMM, the
sequence of the unknown (hidden) null and nonnull states is assumed to form a Markov chain
(θi )n

1 = (θ1, . . . , θn) ∈ {0, 1}n. The observed data values x = (x1, . . . , xn) are independent conditional
on the hidden states (θi )n

1. Let ϑ denote the collection of all HMM parameters.
Sun & Cai (2009) show that, under the HMM dependency, the optimal test statistic is the local

index of significance (LIS), LISi = Pϑ (θi = 0|x), which can be computed using a fast forward–
backward algorithm. The LIS is superior to the p-value because it utilizes the HMM dependence to
pool information from nearly observations. The information from the whole sequence is integrated
to calculate the LIS statistic. With the use of LIS, the signal-to-noise ratio is increased and the
procedure is more robust against local disturbance.

In practice, we estimate the HMM parameters by ϑ̂ and use a plug-in statistic L̂ISi =
Pϑ̂ (θi = 0|x). The MLE is commonly used and is strongly consistent and asymptotically normal
(Leroux 1992, Bickel et al. 1998). The MLE can be computed using the expectation-maximization
algorithm or other standard optimization schemes. Denote by L̂IS(1), . . . , L̂IS(n) the ranked plug-
in test statistics and by H(1), . . . , H(n) the corresponding hypotheses. The following data-driven
procedure can be used for FDR control:

Let k = max

⎧⎨⎩i :
1
i

i∑
j=1

L̂IS( j ) ≤ α

⎫⎬⎭, then reject all H(i ), i = 1, . . . , k. 27.

Sun & Cai (2009) show that the data-driven procedure controls the FDR at level α + o (1) and is
asymptotically optimal. Numerical results from both simulated and real data show that conven-
tional p-value-based methods can be greatly improved. At the same FDR level, the number of
false positives is greatly reduced and the statistical power to reject a nonnull is substantially in-
creased. This indicates that dependence can make the testing problem easier and can be a blessing
if incorporated properly.

3.5.4. Random field model: pointwise inference. The multiple comparison issue has been
raised in a wide range of spatial analyses such as brain imaging (Genovese et al. 2002, Heller et al.
2006, Schwartzman et al. 2008), disease mapping and surveillance (Green & Richardson 2002),
and network analysis (Wei & Li 2007). When the intensities of signals have a spatial pattern,
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it is expected that incorporating the underlying dependence structure can significantly improve
the power and accuracy of conventional methods. In this section, we discuss how to extend the
methodology in an HMM to spatial settings.

Let S be a spatial domain. Consider the random field model (RFM) X = {X (s ) : s ∈ S} of
Pacifico et al. (2004) for spatial multiple testing: X (s ) = μ(s ) + ε(s ), where μ(s ) is the unobserved
random process and ε(s ) is the noise process. Assume that there is an underlying state θ (s ) associated
with each location s with one state being dominant (background). In applications, an important
goal is to identify locations that exhibit significant deviations from background. This can be
formulated as a multiple testing problem. Let θ (s ) ∈ {0, 1} be an indicator such that θ (s ) = 1 if
location s contains signal and θ (s ) = 0 otherwise. For each location, we make a decision δ(s ) = 1
if the null is rejected and δ(s ) = 0 otherwise. The decision process for the whole spatial domain S
is denoted by δ = {δ(s ) : s ∈ S}. Let ν(·) denote the Lebesgue measure for a continuous domain
(or a counting measure for a discrete domain). The spatial FDR can be defined as

FDR = E

[
ν(SFP)
ν(R)

∣∣∣∣ ν(R) > 0
]

P[ν(R) > 0],

where R = {s ∈ S : δ(s ) = 1} is the rejection area, and SFP = {s ∈ S : θ (s ) = 0, δ(s ) = 1} is the
false positive area.

Let xN = (x1, . . . , xN ) denote the observed values. Suppose an oracle knows all RFM param-
eters, denoted by �. The oracle statistic for pointwise inference is TOR(s ) = P�{θ (s ) = 0|xN }.
However, this requires testing an uncountable number of hypotheses for all s ∈ S, which is impos-
sible in practice. Sun et al. (2015) show that a continuous decision process can be described within a
small margin of error by a finite number of decisions on a grid of pixels. Concretely, the strategy is
to divide a continuous S into n pixels, pick one point in each pixel, and use the decision at that point
to represent all decisions in the pixel. Let ∪n

i=1Si be a partition of S. Pick a point s i from each Si . Let
T (1)

OR ≤ T (2)
OR ≤ · · · ≤ T (n)

OR denote the ordered oracle statistics and S(i ) the corresponding regions.
In a pointwise inference, define Rj = ∪ j

i=1S(i ) and r = max
{

j : ν(Rj )−1∑ j
i=1 T (i )

ORν(S(i )) ≤ α
}
.

The rejection area is given by R = ∪r
i=1S(i ). This procedure can be implemented efficiently under

a Bayesian computational framework, which involves hierarchical modeling and Markov chain
Monte Carlo (MCMC) computing (see Sun et al. 2015 for detailed algorithms).

3.5.5. Clusterwise and setwise inference. When the focus is on the behavior of a process over
subregions, the testing units become spatial clusters instead of individual locations. Combining
simultaneous tests in sets or clusters can improve statistical power and provide new research
insights (Benjamini & Heller 2008, Sun & Wei 2011).

Let C = {C1, . . . , CK } denote the set of (known) clusters of interest. In many applications, it is
desirable to incorporate the cluster size or other spatial variables in the error measure. Let ϑk be
a binary variable which equals 0/1 if cluster k is null/nonnull and 0 otherwise. The decision for
cluster k is denoted by a binary indicator�k, where�k = 1 if cluster k is claimed to be significant
and �k = 0 otherwise. We use the false cluster rate (FCR) to measure the overall error rate of a
clusterwise procedure:

FCR = E

{∑
k wk(1 − ϑk)�k

(
∑

k wk�k) ∨ 1

}
, 28.

where wk are cluster-specific weights that are often prespecified in practice. For example, one can
take wk = ν(Ck), the size of a cluster, to indicate that a false positive cluster with larger size would
account for a larger error.
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Let C1, . . . , CK be the clusters andH1, . . . ,HK the corresponding hypotheses. The oracle statis-
tic for clusterwise inference is TOR(Ck) = P� (ϑk = 0|xN ). Let T c

(1) ≤ · · · ≤ T c
(K ) be the ordered

TOR(Ck) values andH(1), . . . ,H(K ) andw(1), . . . ,w(K ) be the corresponding hypotheses and weights,
respectively. Let r = max

{
j : {∑ j

k=1 w(k)}−1∑ j
k=1 w(k)T c

(k) ≤ α
}
. Then reject H(1), . . . ,H(r). This

procedure controls the FCR at level α and can be implemented by MCMC algorithms (see Sun
et al. 2015 for details).

4. DISCUSSION AND OTHER TOPICS

Statistical inference for high-dimensional covariance structures is an active and important area of
research. Driven by a wide range of applications, there have been significant recent developments in
the methods and theory for testing of the global covariance structures and simultaneous testing of
a large number of hypotheses on the local covariance structures with FDP and FDR control. High
dimensionality and dependency impose significant challenges in the construction and analysis of
the testing procedures. The present review does not cover this important topic. We refer interested
readers to Cai (2017) for a comprehensive review on global testing for the covariance, correlation,
and precision matrices and multiple testing for the correlations, Gaussian graphical models, and
differential networks.

The recent innovation of FDR control also provides a powerful regularization method for
estimation of sparse vectors (Abramovich et al. 2006), large covariance matrices (Bailey et al.
2014), and Gaussian graphical models (Liu 2013). Sharp asymptotic optimality results have been
established by exploiting the data-adaptive nature of the BH thresholding scheme (Abramovich
et al. 2006, Wu & Zhou 2013). These works reveal the interesting connection between testing
and estimation problems in high-dimensional inference. Another topic that is not discussed in
this review is simultaneous inference for high-dimensional regression models, which has received
much recent attention (see, for example, Javanmard & Montanari 2014, Liu & Luo 2014, Lockhart
et al. 2014, Van de Geer et al. 2014, Zhang & Zhang 2014, Barber & Candès 2015, Xia et al.
2017, Cai & Guo 2017). Recent works also reveal that multiple testing, and in particular the FDR
control, provides a promising regularization principle for variable selection in high-dimensional
regression models (Liu & Luo 2014, Chudik et al. 2016).

Multiple testing is often used as a selection or screening step in the overall analysis. Selective
inference, which involves making further inference on the selected variables, is an important
area that requires much research on formal theoretical principles and practical methodologies.
Making valid inference after multiple testing or model selection is a challenging task because
the estimates of the postselection variables are biased if the selection effects are not taken into
account. Postselection inference techniques are useful in classical statistical problems such as the
estimation of many normal means and simultaneous confidence intervals (Benjamini & Yekutieli
2005, Brown & Greenshtein 2009, Efron 2011), as well as rapidly growing areas such as high-
dimensional regression and sparse principal components analysis (see Leeb & Pötscher 2005; Stoye
2009; Belloni et al. 2012, 2014a,b; Yekutieli 2012; Hwang & Zhao 2013; Berk et al. 2013; Benjamini
& Bogomolov 2014; Taylor & Tibshirani 2015; and Lee et al. 2016 for recent developments in
this direction).
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